ตอบ:
คำอธิบาย:
นี่เป็นปัญหามาตรฐานในห่วงโซ่และกฎผลิตภัณฑ์
กฎลูกโซ่ระบุว่า:
กฎผลิตภัณฑ์ระบุว่า:
เมื่อรวมสองสิ่งนี้เข้าด้วยกันเราสามารถหาได้
(เพราะ
คะแนน extrema และ saddle ของ f (x) = 2x ^ 2 lnx คืออะไร?
โดเมนของคำจำกัดความของ: f (x) = 2x ^ 2lnx คือช่วงเวลา x ใน (0, + oo) ประเมินอนุพันธ์อันดับที่หนึ่งและสองของฟังก์ชัน: (df) / dx = 4xlnx + 2x ^ 2 / x = 2x (1 + 2lnx) (d ^ 2f) / dx ^ 2 = 2 (1 + 2lnx) + 2x * 2 / x = 2 + 4lnx + 4 = 6 + lnx จุดวิกฤติคือคำตอบของ: f '(x) = 0 2x (1 + 2lnx) = 0 และเป็น x> 0: 1 + 2lnx = 0 lnx = -1 / 2 x = 1 / sqrt (e) ในจุดนี้: f '' (1 / sqrte) = 6-1 / 2 = 11/2> 0 ดังนั้นจุดวิกฤติจึงเป็นจุดต่ำสุดในท้องถิ่น จุดอานคือคำตอบของ: f '' (x) = 0 6 + lnx = 0 lnx = -6 x = 1 / e ^ 6 และ f '' (x) เป็นเสียงเดียวที่เพิ่มขึ้นเราสามารถสรุปได้ว่า f (x ) เป็นส่วนเว้าสำหรับ x <1 / e
อนุพันธ์ของ lnx ^ lnx คืออะไร?
= 2 (ln x) / x (lnx ^ lnx) ^ '= (ln x lnx) ^' = (ln ^ 2 x) ^ '= 2 ln x * 1 / x
อนุพันธ์ของ f (x) = (x ^ 3- (lnx) ^ 2) / (lnx ^ 2) คืออะไร?
ใช้กฎ quotent และกฎลูกโซ่ คำตอบคือ: f '(x) = (3x ^ 3lnx ^ 2-2 (lnx) ^ 2-2x ^ 3) / (x (lnx ^ 2) ^ 2) นี่เป็นเวอร์ชั่นที่เรียบง่าย ดูคำอธิบายเพื่อดูจนถึงจุดที่สามารถยอมรับได้ในฐานะอนุพันธ์ f (x) = (x ^ 3- (lnx) ^ 2) / lnx ^ 2 f '(x) = ((x ^ 3- (lnx) ^ 2)' * lnx ^ 2- (x ^ 3- ( lnx) ^ 2) (lnx ^ 2) ') / (lnx ^ 2) ^ 2 f' (x) = ((3x ^ 2-2lnx * (lnx) ') * lnx ^ 2- (x ^ 3- ( lnx) ^ 2) 1 / x ^ 2 (x ^ 2) ') / (lnx ^ 2) ^ 2 f' (x) = ((3x ^ 2-2lnx * 1 / x) * lnx ^ 2- (x ^ 3- (lnx) ^ 2) 1 / x ^ 2 * 2x) / (lnx ^ 2) ^ 2 ที่ฟอร์มนี้เป็นที่ยอมรับได้จริง แต่เพื่อทำให้มันง่ายขึ้น: f '(x) = ((3x ^ 2-2lnx / x