ตอบ:
คำอธิบาย:
Greatest Common Factor คือจำนวนสูงสุดที่สามารถใช้เพื่อหารจำนวนที่กำหนด พบได้ง่ายโดยการเขียนปัจจัยของตัวเลขสองตัวและเลือกตัวเลขที่มีค่าสูงสุด
ในตัวอย่างที่กำหนดปัจจัยของตัวเลขทั้งสองมีดังนี้:
เนื่องจากมีตัวเลขสองตัวร่วมกันระหว่างปัจจัยทั้งสองชุด GCF จึงเป็น:
ตอบ:
4
คำอธิบาย:
พิจารณาไดอะแกรม Prime Factor Tree ด้านล่าง
สังเกตว่าค่าทั่วไป (ค่าที่มีทั้งคู่) เป็น 2 ล็อต 2 ดังนั้นปัจจัยทั่วไปคือ:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
GCF ของ 210 และ 252 คืออะไร + ตัวอย่าง
42 วิธีหนึ่งในการค้นหา GCF ของตัวเลขสองจำนวนมีดังนี้: color (white) () หารจำนวนที่มากขึ้นด้วยขนาดเล็กลงเพื่อให้มีความฉลาดและเหลือ หากส่วนที่เหลือเป็นศูนย์จำนวนที่น้อยกว่าคือ GCFมิฉะนั้นให้ทำซ้ำด้วยจำนวนที่น้อยกว่าและส่วนที่เหลือ color (white) () ในตัวอย่างของเรา: 252/210 = 1 กับเศษ 42 42 210/42 = 5 กับเศษ 0 ดังนั้น GCF คือ 42
GCF ของ 35 และ 49 คืออะไร? + ตัวอย่าง
7 วิธีง่าย ๆ แต่บางครั้งช้าในการค้นหา GCF ของตัวเลขบวกสองตัวจะเป็นดังนี้: ถ้าตัวเลขสองตัวมีค่าเท่ากันพวกมันจะเท่ากับ GCF มิฉะนั้นให้เปลี่ยนจำนวนที่มากขึ้นด้วยผลลัพธ์ของการลบจำนวนที่น้อยกว่าออก ในตัวอย่างของเรา: เริ่มต้นด้วย 35 และ 49 เนื่องจากมันไม่เท่ากันลบ 35 จาก 49 ได้ 14 เราสองหมายเลข 35 และ 14 ไม่เท่ากันดังนั้นแทนที่ 35 ด้วย 35-14 = 21. 21 และ 14 ไม่เท่ากันดังนั้นแทนที่ 21 ด้วย 21-14 = 7. 14 และ 7 ไม่เท่ากันดังนั้นแทนที่ 14 ด้วย 14-7 = 7. 7 และ 7 เท่ากันดังนั้นจึงเป็น GCF ของเรา
LCD ของ 3/5 และ 1/3 คืออะไร + ตัวอย่าง
จอแอลซีดีของเศษส่วน 3/5 และ 1/3 คือ 3/1 ตัวหารร่วมที่ต่ำที่สุดของเศษส่วนจะแตกต่างจากการค้นหาตัวหารร่วมที่ต่ำที่สุดของจำนวนธรรมชาติ ในการหาตัวหารร่วมที่ต่ำที่สุดของเศษส่วนเราต้องหาตัวหารร่วมที่ต่ำที่สุดของตัวเศษทั้งหมดว่ามันคือ A จากนั้นตัวประกอบร่วมที่สูงที่สุดของตัวส่วนทั้งหมดบอกว่ามันคือ B จากนั้น A / B คือตัวหารร่วมที่ต่ำที่สุด ของเศษส่วน ในตัวอย่างที่กำหนดเรามี 3 และ 1 เป็นตัวเศษและเนื่องจากไม่มีปัจจัยร่วมกันระหว่างพวกเราสามารถคูณพวกมันเพื่อให้ได้ตัวส่วนร่วมต่ำสุดซึ่งก็คือ 3 ในตัวส่วนที่เรามี 5 และ 3 และอีกครั้งเราไม่มีปัจจัยร่วมใด ๆ ระหว่างที่หารจำนวนทั้งหมดเหล่านี้และด้วยเหตุนี้ปัจจัยร่วมที่สูงที่สุดคือ 1 ดังนั้นตัวห