คุณหา (d ^ 2y) / (dx ^ 2) สำหรับ 5 = x ^ 2-2y ^ 2 ได้อย่างไร

คุณหา (d ^ 2y) / (dx ^ 2) สำหรับ 5 = x ^ 2-2y ^ 2 ได้อย่างไร
Anonim

ลบเนื่องจากไม่ถูกต้อง

ตอบ:

ฉันเข้าใจ # -5 / (4Y ^ 3) #

คำอธิบาย:

# 2y ^ 2 = x ^ 2-5 #

# 4y dy / dx = 2x #

# dy / dx = x / (2y) #

# d / dx (dy / dx) = d / dx (x / (2y)) #

# = ((1) (2y) -x (2 (dy / dx))) / (2y) ^ 2 #

# = (2y-2x (x / (2y))) / (4y ^ 2) #

# = (y-x (x / (2y))) / (2y ^ 2) #

# = (y-x (x / (2y))) / (2y ^ 2) * (2y) / (2y) #

# = (2y ^ 2-x ^ 2) / (4y ^ 3 #

เราเริ่มต้นด้วย # 5 = x ^ ^ 2 2-2y #ดังนั้นเราจึงมี

# 2y ^ 2-x ^ 2 = -5 #ทำอนุพันธ์อันดับสอง

# (d ^ 2y) / dx ^ 2 = -5 / (4y ^ 3) #

ตอบ:

#y '' = -5/4 1 / y ^ 3 #

คำอธิบาย:

# 2y (x) ^ 2-x ^ 2 + 5 = 0-> d / (dx) (2y (x) ^ 2-x ^ 2 + 5) = 4 ปี y'-2x = 0 #

# d / (dx) (2y y'-x) = 2 ((y ') ^ 2 + y y' ') - 1 = 0 # ดังนั้น

# y '' = (1/2 (y) ^ 2) / Y # แต่ # Y '= 1 / 2x / Y # ดังนั้น

#y '' = (2y ^ 2-x ^ 2) / (4y ^ 3) = -5/4 1 / y ^ 3 #