ตอบ:
ดูด้านล่าง
คำอธิบาย:
ถ้าเรารู้ว่านิพจน์ต้องเป็นรูปสี่เหลี่ยมจัตุรัสแบบเชิงเส้นแล้ว
จากนั้นจัดกลุ่มค่าสัมประสิทธิ์ที่เรามี
ดังนั้นเงื่อนไขคือ
สิ่งนี้สามารถแก้ไขได้โดยการรับค่าแรก
เรารู้ว่า
พิสูจน์: - sin (7 theta) + sin (5 theta) / sin (7 theta) -sin (5 theta) =?
(sin7x + sin5x) / (sin7x-sin5x) = tan6x * cotx rarr (sin7x + sin5x) / (sin7x-sin5x) = (2sin (7x + 5x) / 2) * cos (7x-5x) / 2) ) / (2sin ((7x-5x) / 2) * cos ((7x + 5x) / 2) = (sin6x * cosx) / (sinx * cos6x) = (tan6x) / tanx = tan6x * cottx
แสดงว่า (1 + cos theta + i * sin theta) ^ n + (1 + cos theta - i * sin theta) ^ n = 2 ^ (n + 1) * (cos theta / 2) ^ n * cos ( n * theta / 2)?
โปรดดูที่ด้านล่าง. ให้ 1 + costheta + isintheta = r (cosalpha + isinalpha), ที่นี่ r = sqrt ((1 + costheta) ^ 2 + sin ^ 2theta) = sqrt (2 + 2costheta) = sqrt (2 + 4cos ^ 2 (theta / 2 ) -2) = 2cos (theta / 2) และ tanalpha = sintheta / (1 + costheta) == (2sin (theta / 2) cos (theta / 2)) / (2cos ^ 2 (theta / 2)) = tan (theta / 2) หรือ alpha = theta / 2 จากนั้น 1 + costheta-isintheta = r (cos (-alpha) + isin (-alpha)) = r (cosalpha-isinalpha) และเราสามารถเขียน (1 + costheta + isintheta) ^ n + (1 + costheta-isintheta) ^ n ใช้ทฤษฎีบท DE MOivre เป็น r ^ n (cosnalpha + isinnalpha + cosnalpha-isinnalpha) = 2r ^ ncosnalpha = 2 * 2
คุณยืนยัน [sin ^ 3 (B) + cos ^ 3 (B)] / [sin (B) + cos (B)] = 1-sin (B) cos (B) ได้อย่างไร
หลักฐานด้านล่างการขยายตัวของ ^ 3 + b ^ 3 = (a + b) (a ^ 2-ab + b ^ 2) และเราสามารถใช้สิ่งนี้: (sin ^ 3B + cos ^ 3B) / (sinB + cosB) = ((sinB + cosB) (sin ^ 2B-sinBcosB + cos ^ 2B)) / (sinB + cosB) = sin ^ 2B-sinBcosB + cos ^ 2B = sin ^ 2B + cos ^ 2B-sinBcosB (เอกลักษณ์: sin ^ 2x + cos ^ 2x = 1) = 1-sinBcosB