ตอบ:
# (1-3i) / sqrt (1 + 3i) #
# = (- 2sqrt ((sqrt (10) +1) / 2) + 3 / 2sqrt ((sqrt (10) -1) / 2)) - (2sqrt ((sqrt (10) -1) / 2) + 3 / 2sqrt ((sqrt (10) +1) / 2)) I #
คำอธิบาย:
โดยทั่วไปรากที่สองของ
# + - ((sqrt ((sqrt (a ^ 2 + b ^ 2) + a) / 2)) + (b / abs (b) sqrt ((sqrt (a ^ 2 + b ^ 2) -a) / 2)) i) #
ดู:
ในกรณีของ
#sqrt (1 + 3i) #
# = sqrt ((sqrt (1 ^ 2 + 3 ^ 2) +1) / 2) + sqrt ((sqrt (1 ^ 2 + 3 ^ 2) -1) / 2) I #
# = sqrt ((sqrt (10) +1) / 2) + sqrt ((sqrt (10) -1) / 2) i #
ดังนั้น:
# (1-3i) / sqrt (1 + 3i) #
# = ((1-3i) sqrt (1 + 3i)) / (1 + 3i) #
# = ((1-3i) ^ 2 sqrt (1 + 3i)) / ((1 + 3i) (1-3i)) #
# = ((1-3i) ^ 2 sqrt (1 + 3i)) / 4 #
# = 1/4 (1-3i) ^ 2 (sqrt ((sqrt (10) +1) / 2) + sqrt ((sqrt (10) -1) / 2) i) #
# = 1/4 (-8-6i) (sqrt ((sqrt (10) +1) / 2) + sqrt ((sqrt (10) -1) / 2) i) #
# = - 1/2 (4 + 3i) (sqrt ((sqrt (10) +1) / 2) + sqrt ((sqrt (10) -1) / 2) i) #
# = - 1/2 ((4sqrt ((sqrt (10) +1) / 2) -3sqrt ((sqrt (10) -1) / 2)) + (4sqrt ((sqrt (10) -1) / 2) + 3sqrt ((sqrt (10) +1) / 2)) i) #
# = (- 2sqrt ((sqrt (10) +1) / 2) + 3 / 2sqrt ((sqrt (10) -1) / 2)) - (2sqrt ((sqrt (10) -1) / 2) + 3 / 2sqrt ((sqrt (10) +1) / 2)) I #
Cos (arctan (3)) + sin (arctan (4)) เท่ากันคืออะไร?
Cos (arctan (3)) + sin (arctan (4)) = 1 / sqrt (10) + 4 / sqrt (17) ให้ tan ^ -1 (3) = x แล้ว rarrtanx = 3 rarrsecx = sqrt (1 + tan ^ 2x) = sqrt (1 + 3 ^ 2) = sqrt (10) rarrcosx = 1 / sqrt (10) rarrx = cos ^ (- 1) (1 / sqrt (10)) = tan ^ (- 1) (3 ) นอกจากนี้ให้ tan ^ (- 1) (4) = y แล้ว rarrtany = 4 rarrcoty = 1/4 rarrcscy = sqrt (1 + cot ^ 2y) = sqrt (1+ (1/4) ^ 2) = sqrt ( 17) / 4 rarrsiny = 4 / sqrt (17) rarry = sin ^ (- 1) (4 / sqrt (17)) = tan ^ (- 1) 4 ตอนนี้ rarrcos (tan ^ (- 1) (3)) + sin (tan ^ (- 1) tan (4)) rarrcos (cos ^ -1 (1 / sqrt (10))) + sin (sin ^ (- 1) (4 / sqrt (17))) = 1 / sqrt (10) + 4 / sqrt (17)
(2i) / (4-5i) เท่ากันคืออะไร
(2i) / (4-5i) = -10 / 41 + 8/41 i ตัวคูณและตัวส่วนคูณโดยคอนจูเกต (4 + 5i) ของส่วนและทำให้ง่ายขึ้น ... (2i) / (4-5i) = ( 2i (4 + 5i)) / ((4-5i) (4 + 5i)) = (-10 + 8i) / (4 ^ 2 + 5 ^ 2) = (-10 + 8i) / (16 + 25) = (-10 + 8i) / 41 = -10 / 41 + 8/41 i
(sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt (3-) sqrt (5))
2/7 เราใช้เวลา A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sq5 -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) ) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) = ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15) (/ 2sqrt3 + sqrt5) ^ 2- (sqrt5) ^ 2) = (ยกเลิก (2sqrt15) -5 + 2 * 3cancel (-sqrt15) - ยกเลิก (2sqrt15) -5 + 2 * 3 + ยกเลิก (sqrt15)) / (12-5) = ( -10 + 12) / 7 = 2/7 โปรดทราบว่าหากในตัวหารคือ (sqrt3 + sqrt (3 + sqrt5)) และ (sqrt3 + sqrt (3-sq