รากที่สองของ
ตอบ:
คำอธิบาย:
โดยปกติจำนวนบวกทั้งหมดจะมีรากที่สองสองอันบวกหนึ่งและลบที่มีขนาดเท่ากัน เราแสดงว่ารากที่สอง (a.k.a. หลัก) ที่เป็นบวกของ
รากที่สองของตัวเลข
อย่างไรก็ตามการใช้งานที่นิยมคือ "รากที่สอง" หมายถึงการบวก
สมมติว่าเรามีจำนวนบวก
#x = 2 + 1 / (2 + x) #
จากนั้นคูณทั้งสองข้างด้วย
# x ^ 2 + 2x = 2x + 5 #
จากนั้นทำการลบ
# x ^ 2 = 5 #
ดังนั้นเราจึงได้พบ:
#sqrt (5) = 2 + 1 / (2 + sqrt (5)) #
#color (white) (sqrt (5)) = 2 + 1 / (4 + 1 / (4 + 1 / (4 + 1 / (4 + 1 / (4 + …))))))
เนื่องจากเศษส่วนต่อเนื่องนี้ไม่ได้หยุดเราสามารถบอกได้ว่า
ตัวอย่างเช่น:
#sqrt (5) ~~ 2 + 1 / (4 + 1/4) = 2 + 4/17 = 38/17 ~~ 2.235 #
การคลายเศษส่วนต่อเนื่องเหล่านี้อาจเป็นเรื่องน่าเบื่อเล็กน้อยดังนั้นโดยทั่วไปแล้วฉันชอบใช้วิธีที่แตกต่างกันนั่นคืออัตราส่วน จำกัด ของลำดับเลขจำนวนเต็มที่กำหนดแบบเรียกซ้ำ
กำหนดลำดับโดย:
# {(a_0 = 0), (a_1 = 1), (a_ (n + 2) = 4a_ (n + 1) + a_n):} #
คำศัพท์สองสามคำแรกคือ:
#0, 1, 4, 17, 72, 305, 1292, 5473#
อัตราส่วนระหว่างเทอมจะมีแนวโน้มที่จะ
ดังนั้นเราจึงพบ:
#sqrt (5) ~~ 5473/1292 - 2 = 2889/1292 ~~ 2.236068 #
(รากที่สองของ [6] + 2 สแควร์รูทของ [2]) คืออะไร (4 สแควร์รูทของ [6] - 3 สแควร์รูทของ 2)
12 + 5sqrt12 เราคูณทวีคูณนั่นคือ (sqrt6 + 2sqrt2) (4sqrt6 - 3sqrt2) เท่ากับ sqrt6 * 4sqrt6 + 2sqrt6 * 4sqrt6 * 3sqrt2 - 3sqrt2 * 3sqrt2 * 3sqrt2 ดังนั้น 4 * 6 + 8sqrt2sqrt6 - 3sqrt6sqrt2 - 6 * 2 เราใส่ sqrt2sqrt6 เป็นหลักฐาน: 24 + (8-3) sqrt6sqrt2 - 12 เราสามารถเข้าร่วมทั้งสองรากในหนึ่งเดียวหลังจาก sqrtxsqrty ทั้งหมด = sqrt (xy) ตราบใดที่พวกเขา ' ไม่เชิงลบทั้งสอง ดังนั้นเราจะได้ 24 + 5sqrt12 - 12 สุดท้ายเราแค่เอาความแตกต่างของค่าคงที่สองตัวและเรียกมันว่าวัน 12 + 5sqrt12
สแควร์รูทของ 169 คืออะไร - สแควร์รูทของ 50 - สแควร์รูทของ 8?
Sqrt169 - sqrt50 - sqrt8 = 13 -7sqrt2 sqrt169 - sqrt50 - sqrt8 สิ่งแรกที่ต้องทำคือคำนึงถึงตัวเลขทั้งหมดที่อยู่ในราก นั่นคือการแสดงรายการซับไตเติ้ลไพรม์จำนวนเต็มทั้งหมดตามลำดับจากน้อยไปหามากที่สุด คุณไม่ต้องทำตามคำสั่งนั้นหรือใช้เฉพาะจำนวนเต็มหรือจำนวนเต็ม แต่วิธีนี้เป็นวิธีที่ง่ายที่สุดเพราะ: a) คุณมีคำสั่งซื้อดังนั้นคุณจะไม่ลืมที่จะใส่หลาย ๆ แบบหรือไม่ b) ถ้าคุณใส่ทั้งหมด คุณจะครอบคลุมทุกหมายเลข มันค่อนข้างเหมือนกับการค้นหาตัวคูณร่วมน้อย แต่คุณทำได้ทีละครั้ง ดังนั้นสำหรับ 169 ตัวประกอบคือ 169 = 13 ^ 2 (คุณสามารถยืนยันได้ถ้าคุณต้องการ) ดังนั้นเราสามารถเขียนรูทนั้นเป็น 13 ได้เพราะ 169 เป็นสี่เหลี่ยมจัตุรัสที่สมบูรณ์แบบ sqrt
สแควร์รูทของ 7 + สแควร์รูทของ 7 ^ 2 + สแควร์รูทของ 7 ^ 3 + สแควร์รูทของ 7 ^ 4 + สแควร์รูทของ 7 ^ 5
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) สิ่งแรกที่เราทำได้คือยกเลิกรากที่มีอำนาจเท่า ๆ กัน เนื่องจาก: sqrt (x ^ 2) = x และ sqrt (x ^ 4) = x ^ 2 สำหรับหมายเลขใด ๆ เราสามารถพูดได้ว่า sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) ตอนนี้ 7 ^ 3 สามารถเขียนใหม่เป็น 7 ^ 2 * 7 และ 7 ^ 2 นั้นสามารถหลุดพ้นจากราก! เช่นเดียวกับ 7 ^ 5 แต่เขียนใหม่เป็น 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7) + 49 + 49sqrt (7) ตอนนี้เราใส่รากในหลักฐาน sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3)