การผกผันการคูณของเมทริกซ์คืออะไร?

การผกผันการคูณของเมทริกซ์คืออะไร?
Anonim

อินเวอร์สการคูณของเมทริกซ์ # A # เป็นเมทริกซ์ (ระบุว่าเป็น รุ่น A ^ -1 #) ดังนั้น:

# A * a ^ -1 = a ^ -1 * A = I #

ที่ไหน #ผม# คือเมทริกซ์เอกลักษณ์ (ประกอบด้วยศูนย์ทั้งหมดยกเว้นเส้นทแยงมุมหลักที่มีทั้งหมด #1#).

ตัวอย่างเช่น:

ถ้า: A = # #

4 3

3 2

รุ่น A ^ = -1 #

-2 3

3 -4

ลองคูณมันและคุณจะพบเมทริกซ์เอกลักษณ์:

1 0

0 1

ตอบ:

เพิ่งเพิ่มเชิงอรรถ

คำอธิบาย:

ประการแรกเมทริกซ์ที่อธิบายไว้ที่นี่ต้องเป็นสี่เหลี่ยมจัตุรัส # (n xx n) # และกลับด้านได้เช่นนั้นสำหรับเมทริกซ์จตุรัสที่กำหนด # A #มีเมทริกซ์จตุรัสอยู่ # B # ที่ไหน

#AB = BA = I #

กับ #ผม# เป็นเมทริกซ์เอกลักษณ์

สิ่งนี้สามารถกำหนดได้โดยการคำนวณดีเทอร์มิแนนต์ของ # A #.

#A = ((a, b), (c, d)) #

ดีเทอร์มิแนนต์ของ # A #, #det (A) #, จะ

#det (A) = ad - bc #

ถ้า #det (A) = 0 #, # A # เป็นเอกพจน์ (ตรงข้ามกับ invertible) รุ่น A ^ -1 # ไม่มีอยู่จริง แต่ถ้า

#det (A)! = 0 #, # A # กลับด้านได้และ รุ่น A ^ -1 # ที่มีอยู่