ตอบ:
คำอธิบาย:
จากสมการของเส้นทั้งหมดที่เราต้องทำคือจัดเรียงมันใหม่ในรูปของ
ตอนนี้สมการอยู่ในรูปของความชัน - การสกัดกั้นด้วยความชัน
ตอบ:
ดูกระบวนการแก้ปัญหาด้านล่าง:
คำอธิบาย:
เราสามารถคูณแต่ละข้างของสมการได้
ที่ไหนถ้าเป็นไปได้
ความชันของสมการในรูปแบบมาตรฐานคือ:
การทดแทนให้:
ตอบ:
ความลาดชัน =
คำอธิบาย:
ดังนั้นคุณจะต้องการให้มันเข้าไป
ในการจัดเรียงสมการใหม่:
เพิ่ม
ตอนนี้แบ่งแต่ละด้านด้วย
ตอนนี้คุณมีการจัดสมการที่ถูกต้องและสามารถพลิกกลับได้
ตอนนี้คุณมีสมการหารด้วย
และจากสมการที่เราสามารถเห็นได้ในตอนนี้
ฉันจะใช้สูตรสมการกำลังสองเพื่อแก้ x ^ 2 + 7x = 3 ได้อย่างไร
ในการทำสูตรสมการกำลังสองคุณเพียงแค่ต้องรู้ว่าจะเสียบที่ใด อย่างไรก็ตามก่อนที่เราจะไปหาสูตรกำลังสองเราจำเป็นต้องรู้ส่วนของสมการของเราเอง คุณจะเห็นว่าทำไมสิ่งนี้จึงสำคัญในไม่ช้า นี่คือสมการมาตรฐานสำหรับสมการกำลังสองที่คุณสามารถแก้ด้วยสูตรสมการกำลังสอง: ax ^ 2 + bx + c = 0 ทีนี้เมื่อคุณสังเกตเห็นเรามีสมการ x ^ 2 + 7x = 3 กับ 3 ในอีกด้านหนึ่ง ของสมการ เราจะลบ 3 จากทั้งสองข้างเพื่อรับ: x ^ 2 + 7x -3 = 0 ทีนี้เสร็จแล้วลองดูสูตรสมการกำลังสอง: (-b + - sqrt (b ^ 2) -4ac)) / (2a) ตอนนี้คุณเข้าใจแล้วว่าทำไมเราต้องเห็นรูปแบบมาตรฐานของสมการ หากปราศจากสิ่งนั้นเราจะไม่รู้ว่าพวกเขาหมายถึงอะไรโดย a, b หรือ c! ดังนั้นตอนนี้เราเข้าใจว่ามันเป
คุณจะหาความชันที่ให้ 2x-3y = 12 ได้อย่างไร?
2/3 ดังนั้นคุณต้องการใส่สมการกลับเข้าไปในสมการเชิงเส้น y = mx + c เนื่องจาก m คือความชันลบ 2x จากทั้งสองด้าน -3y = 12-2x หารด้วย -3 ทั้งสองข้าง y = (12-2x) / -3 แบ่งทางด้านขวามือออกเป็นสองส่วน y = 12 / -3 + (- 2) / - 3x หรือ y = (- 2) / - 3x + 12 / -3 Simplfy y = 2 / 3x-4 ดังนั้น ความชันคือ 2/3
คุณจะหาความชันที่ให้ (-3,2) และ (3,6) ได้อย่างไร?
M = 2/3 เพื่อแก้ปัญหานี้เราสามารถใช้สูตรการไล่ระดับสี: m = (y2-y1) / (x2-x1) โดยที่ (x1, y1) เป็นพิกัดของจุดแรกและ (x2, y2) คือพิกัดของจุดที่สองและ m คือสิ่งที่เราพยายามค้นหา ลองโทร (-3,2) จุดที่ 1 และ (3,6) จุดที่ 2 โปรดทราบว่ามันไม่สำคัญว่าอันใดจะเป็นจุดที่ 1 คุณจะได้รับผลลัพธ์เดียวกันอย่างไรก็ตามโดยใช้สูตรการไล่ระดับสี ข้อมูลที่เรามีและค้นหาเขาไล่ระดับ: m = (6-2) / (3 - (- 3)) m = 4/6 m = 2/3 ถ้าคุณต้องการให้ฉันอธิบายว่าทำไมสูตรไล่ระดับสีทำงานแค่บอกว่า