ถ้า
ที่นี่ขอ
ดังนั้นความชันของเส้นผ่านจุดที่กำหนดคือ
'L แปรเปลี่ยนร่วมกันเป็น a และรากที่สองของ b และ L = 72 เมื่อ a = 8 และ b = 9. ค้นหา L เมื่อ a = 1/2 และ b = 36? Y แปรเปลี่ยนร่วมกันเป็นลูกบาศก์ของ x และรากที่สองของ w และ Y = 128 เมื่อ x = 2 และ w = 16 ค้นหา Y เมื่อ x = 1/2 และ w = 64?
L = 9 "และ" y = 4> "คำสั่งเริ่มต้นคือ" Lpropasqrtb "เพื่อแปลงเป็นสมการคูณด้วย k ค่าคงที่" "ของรูปแบบ" rArrL = kasqrtb "เพื่อหา k ใช้เงื่อนไขที่กำหนด" L = 72 " "a = 8" และ "b = 9 L = kasqrtbrArrk = L / (asqrtb) = 72 / (8xxsqrt9) = 72/24 = 3" สมการคือ "สี (แดง) (แถบ (ul (| สี (สีขาว)) 2/2) สี (ดำ) (L = 3asqrtb) สี (ขาว) (2/2) |))) "เมื่อ" a = 1/2 "และ" b = 36 "L = 3xx1 / 2xxsqrt36 = 3xx1 / 2xx6 = 9 สี (สีน้ำเงิน) "------------------------------------------- ------------ "" ในทำนองเดียวกัน "y = kx ^
ความชันของเส้นแบ่งระหว่าง (2,3) และ (5,7) คืออะไร?
ความชันคือ 4/3 ความชันที่ร้องขอนั้นได้มาจากการใช้: slope = (y_2-y_1) / (x_2-x_1) ในกรณีนี้: slope = (7-3) / (5-2) = 4/3
ความชันของเส้นแบ่งระหว่าง (-33,2) และ (-17, -7) คืออะไร?
ดูกระบวนการแก้ปัญหาด้านล่าง: สูตรการค้นหาความชันของเส้นคือ: m = (สี (แดง) (y_2) - สี (สีน้ำเงิน) (y_1)) / (สี (แดง) (x_2) - สี (สีน้ำเงิน) (x_1)) โดยที่ (สี (สีฟ้า) (x_1), สี (สีน้ำเงิน) (y_1)) และ (สี (สีแดง) (x_2), สี (สีแดง) (y_2)) เป็นจุดสองจุดบนบรรทัด การแทนที่ค่าจากจุดที่เป็นปัญหาจะให้: m = (สี (แดง) (- 7) - สี (สีน้ำเงิน) (2)) / (สี (แดง) (- 17) - สี (สีน้ำเงิน) (- 33) ) = (color (red) (- 7) - color (blue) (2)) / (color (red) (- 17) + color (blue) (33)) = -9/16