ตอบ:
คำอธิบาย:
มีหลายวิธีที่จะเห็นสิ่งนี้ นี่คือหนึ่ง:
ได้รับ:
#b root (3) (64a ^ (b / 2)) = (4sqrt (3) a) ^ 2 #
Cube ทั้งสองด้านเพื่อรับ:
# 64 b ^ 3 a ^ (b / 2) = (4sqrt (3) a) ^ 6 = 4 ^ 6 * 3 ^ 3 a ^ 6 #
กำลังเท่ากันของ
# b / 2 = 6 #
ดังนั้น:
#b = 12 #
ในการตรวจสอบหารทั้งสองข้างด้วย
# b ^ 3 a ^ (b / 2) = 4 ^ 3 * 3 ^ 3 a ^ 6 = 12 ^ 3 a ^ 6 #
ดูที่ค่าสัมประสิทธิ์ของ
(sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt (3-) sqrt (5))
2/7 เราใช้เวลา A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sq5 -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) ) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) = ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15) (/ 2sqrt3 + sqrt5) ^ 2- (sqrt5) ^ 2) = (ยกเลิก (2sqrt15) -5 + 2 * 3cancel (-sqrt15) - ยกเลิก (2sqrt15) -5 + 2 * 3 + ยกเลิก (sqrt15)) / (12-5) = ( -10 + 12) / 7 = 2/7 โปรดทราบว่าหากในตัวหารคือ (sqrt3 + sqrt (3 + sqrt5)) และ (sqrt3 + sqrt (3-sq
คุณลดความซับซ้อนของ [ frac {2} {9} cdot frac {3} {10} - (- frac {2} {9} div frac {1} {3})] - frac { 2} {5}?
1/3 [2/9*3/10-(-2/9-:1/3)]-2/5 =[6/90-(-2/9*3/1)]-2/5 =[6/90+(2/9*3/1)]-2/5 =[6/90+6/9]-2/5 =[6/90+60/90]-2/5 =[66/90]-2/5 =66/90-36/90 =30/90 =1/3
เมื่อ A = root (3) 3, B = root (4) 4, C = root (6) 6 ให้ค้นหาความสัมพันธ์ หมายเลขใดที่ถูกต้อง<> <> <> <><><>
5. C <B <A ที่นี่ A = root (3) 3, B = root (4) 4 และ C = root (6) 6 ตอนนี้ "LCM จาก: 3, 4, 6 คือ 12" ดังนั้น A ^ 12 = (root (3) 3) ^ 12 = (3 ^ (1/3)) ^ 12 = 3 ^ 4 = 81 B ^ 12 = (ราก (4) 4) ^ 12 = (4 ^ (1/4)) ^ 12 = 4 ^ 3 = 64 C ^ 12 = (ราก (6) 6) ^ 12 = (6 ^ (1/6)) ^ 12 = 6 ^ 2 = 36 เช่น 36 <64 <81 => C ^ 12 <B ^ 12 <A ^ 12 => C <B <A