นี่คือสถานการณ์ที่แสดงด้านล่าง
ดังนั้นให้เวลา
เราสามารถพูดได้
เราจะได้สิ่งนี้
ดังนั้นหนึ่งค่า (เล็กกว่า) ของ
ดังนั้นเราสามารถพูดได้ว่าในช่วงเวลานี้ระยะทางของโครงการจะเดินทางในแนวนอน
การใส่ค่าและการจัดเรียงเราจะได้รับ
การแก้เพื่อ
วางกลับ
หรือ,
ตอนนี้สูตรสำหรับช่วงของการเคลื่อนไหวของกระสุนปืนคือ
ดังนั้นการคูณค่าที่ได้จาก
ค้นหาค่าของ theta, ถ้า, Cos (theta) / 1 - sin (theta) + cos (theta) / 1 + sin (theta) = 4?
Theta = pi / 3 หรือ 60 ^ @ Okay เราได้รับ: costheta / (1-sintheta) + costheta / (1 + sintheta) = 4 ตอนนี้เราไม่สนใจ RHS costheta / (1-sintheta) + costheta / (1 + sintheta) (Costheta (1 + sintheta) + costheta (1-sintheta)) / ((1-sintheta) (1 + sintheta)) (Costheta (1-sintheta) ) + (1 + sintheta))) / (1-sin ^ 2theta) (costheta (1-sintheta + 1 + sintheta)) / (1-sin ^ 2theta) (2costheta) / (1-sin ^ 2theta) ตาม อัตลักษณ์ของพีทาโกรัสบาป ^ 2theta + cos ^ 2theta = 1 ดังนั้น: cos ^ 2theta = 1-sin ^ 2theta ทีนี้เมื่อเรารู้แล้วเราสามารถเขียนได้: (2costheta) / cos ^ 2theta 2 / costheta = 4 costheta / 2 = 1/4 Costheta = 1/2 theta = cos
พิสูจน์ว่า: -cot ^ -1 (theta) = cos ^ -1 (theta) / 1 + (theta) ²?
ให้ cot ^ (- 1) theta = A แล้ว rarrcotA = theta rarrtanA = 1 / theta rarrcosA = 1 / secA = 1 / sqrt (1 + tan ^ 2A) = 1 / sqrt (1+ (1 / theta) ^ 2) rarrcosA = 1 / sqrt ((1 + theta ^ 2) / theta ^ 2) = theta / sqrt (1 + theta ^ 2) rarrA = cos ^ (- 1) (theta / (sqrt (1 + theta ^ 2)) ) = cot ^ (- 1) (theta) rarrthereforecot ^ (- 1) (theta) = cos ^ (- 1) (theta / (sqrt (1 + theta ^ 2)))
แสดงว่า (1 + cos theta + i * sin theta) ^ n + (1 + cos theta - i * sin theta) ^ n = 2 ^ (n + 1) * (cos theta / 2) ^ n * cos ( n * theta / 2)?
โปรดดูที่ด้านล่าง. ให้ 1 + costheta + isintheta = r (cosalpha + isinalpha), ที่นี่ r = sqrt ((1 + costheta) ^ 2 + sin ^ 2theta) = sqrt (2 + 2costheta) = sqrt (2 + 4cos ^ 2 (theta / 2 ) -2) = 2cos (theta / 2) และ tanalpha = sintheta / (1 + costheta) == (2sin (theta / 2) cos (theta / 2)) / (2cos ^ 2 (theta / 2)) = tan (theta / 2) หรือ alpha = theta / 2 จากนั้น 1 + costheta-isintheta = r (cos (-alpha) + isin (-alpha)) = r (cosalpha-isinalpha) และเราสามารถเขียน (1 + costheta + isintheta) ^ n + (1 + costheta-isintheta) ^ n ใช้ทฤษฎีบท DE MOivre เป็น r ^ n (cosnalpha + isinnalpha + cosnalpha-isinnalpha) = 2r ^ ncosnalpha = 2 * 2