สปริงที่มีค่าคงที่ 4 (kg) / s ^ 2 กำลังนอนอยู่บนพื้นด้วยปลายด้านหนึ่งยึดติดกับผนัง วัตถุที่มีมวล 2 กิโลกรัมและความเร็ว 3 m / s ชนกับและบีบอัดสปริงจนกว่าจะหยุดเคลื่อนที่ สปริงจะบีบอัดเท่าไหร่

สปริงที่มีค่าคงที่ 4 (kg) / s ^ 2 กำลังนอนอยู่บนพื้นด้วยปลายด้านหนึ่งยึดติดกับผนัง วัตถุที่มีมวล 2 กิโลกรัมและความเร็ว 3 m / s ชนกับและบีบอัดสปริงจนกว่าจะหยุดเคลื่อนที่ สปริงจะบีบอัดเท่าไหร่
Anonim

ตอบ:

สปริงจะบีบอัด #1.5#ม.

คำอธิบาย:

คุณสามารถคำนวณได้โดยใช้กฎของ Hooke:

# F = -kx #

# F # คือแรงที่กระทำกับสปริง # k # คือค่าคงตัวของสปริงและ # x # ระยะทางที่สปริงบีบอัด คุณกำลังพยายามค้นหา # x #. คุณต้องรู้ # k # (คุณมีสิ่งนี้อยู่แล้ว) และ # F #.

คุณสามารถคำนวณ # F # โดยใช้ # F = MA #ที่ไหน # ม # คือมวลและ # A # คือการเร่งความเร็ว คุณได้รับมวล แต่จำเป็นต้องรู้อัตราเร่ง

หากต้องการค้นหาความเร่ง (หรือความเร่งในกรณีนี้) กับข้อมูลที่คุณมีให้ใช้การจัดเรียงกฎการเคลื่อนที่ที่สะดวกใหม่นี้:

# v ^ 2 u = ^ 2 + 2as #

ที่ไหน # v # เป็นความเร็วสุดท้าย #ยู# คือความเร็วเริ่มต้น # A # คือความเร่งและ # s # คือระยะทางที่เดินทาง # s # ที่นี่เหมือนกับ # x # (ระยะทางที่สปริงบีบอัด = ระยะทางที่วัตถุเคลื่อนที่ก่อนหยุด)

ทดแทนในค่าที่คุณรู้ว่า

# v ^ 2 u = ^ 2 + 2as #

# 0 ^ 2 = 3 ^ 2 + 2AX # (ความเร็วสุดท้ายคือ #0# เนื่องจากวัตถุช้าลงจนหยุด)

#a = frac {-9} {2x} # จัดเรียงใหม่สำหรับ # A #)

ขอให้สังเกตว่าการเร่งความเร็วเป็นลบ นี่เป็นเพราะวัตถุช้าลง (ชะลอตัวลง)

แทนสมการนี้สำหรับ # A # เข้าไป # F = MA #

# F = MA #

# F = m frac {-9} {2x} #

# F = 2 frac {-9} {2x} # (คุณก็รู้นี่ # m = 2 #)

# F = frac {-9} {x} # ปัจจัยของ #2# ยกเลิก)

แทนสมการนี้สำหรับ # F # เข้าสู่สมการสำหรับกฎของฮุก:

# F = -kx #

# frac {-9} {x} = - KX #

# x ^ 2 = frac {-9} {- k} # (จัดเรียงใหม่สำหรับ # x #)

# x ^ 2 = frac {9} {4} # (ลบเครื่องหมายลบคุณจะได้รับ # k = 4 #)

# x = frac { sqrt {9}} { sqrt {4}} # แก้หา # x #)

#x = frac {3} {2} = 1.5 #

ขณะที่คุณทำงานในหน่วย SI ระยะทางนี้มีหน่วยเป็นเมตร

สปริงจะบีบอัด #1.5#ม.