ตอบ:
คำอธิบาย:
ใช้
ใช้ตัวตน
เรารู้ว่า
ตอบ:
คำอธิบาย:
เรามี
แต่
แล้วก็
ในที่สุดก็จำได้
คุณจะรวม int x ^ 2 e ^ (- x) dx โดยใช้การรวมเป็นส่วน ๆ ได้อย่างไร
Intx ^ 2e ^ (- x) dx = -e ^ (- x) (x ^ 2 + 2x + 2) + C การรวมโดยชิ้นส่วนบอกว่า: intv (du) / (dx) = uv-intu (dv) / (dx) u = x ^ 2; (du) / (dx) = 2x (dv) / (dx) = e ^ (- x); v = -e ^ (- x) intx ^ 2e ^ (- x) dx = -x ^ 2e ^ (- x) -int-2xe ^ (- 2x) dx ทีนี้เราทำสิ่งนี้: int-2xe ^ (- 2x) dx u = 2x; (du) / (dx) = 2 (dv ) / (dx) = - e ^ (- x); v = e ^ (- x) int-2xe ^ (- x) dx = 2xe ^ (- x) -int2e ^ (- x) dx = 2xe ^ ( -x) + 2e ^ (- x) intx ^ 2e ^ (- x) dx = -x ^ 2e ^ (- x) - (2xe ^ (- x) + 2e ^ (- x)) = - x ^ 2e ^ (- x) -2xe ^ (- x) -2e ^ (- x) + C = -e ^ (- x) (x ^ 2 + 2x + 2) + C
คุณจะรวม int ln (x) / x dx โดยใช้การรวมเป็นส่วน ๆ ได้อย่างไร
Intln (x) / xdx = ln (x) ^ 2/4 การรวมโดยส่วนต่าง ๆ เป็นความคิดที่ไม่ดีที่นี่คุณจะมี intln (x) / xdx อยู่ที่ไหนสักแห่ง มันเป็นการดีกว่าที่จะเปลี่ยนตัวแปรที่นี่เพราะเรารู้ว่าอนุพันธ์ของ ln (x) คือ 1 / x เราบอกว่า u (x) = ln (x), มันหมายความว่า du = 1 / xdx ตอนนี้เราต้องรวม intudu intudu = u ^ 2/2 ดังนั้น intln (x) / xdx = ln (x) ^ 2/2
คุณจะรวม int 3 * (csc (t)) ^ 2 / cot (t) dt ได้อย่างไร
ใช้การแทนค่า u เพื่อรับ -3lnabs (cot (t)) + C ก่อนอื่นให้สังเกตว่าเนื่องจาก 3 เป็นค่าคงที่เราสามารถดึงมันออกมาจากอินทิกรัลเพื่อทำให้ง่ายขึ้น: 3int (csc ^ 2 (t)) / cot (t) dt ตอนนี้ - และนี่คือส่วนที่สำคัญที่สุด - สังเกตว่าอนุพันธ์ จาก cot (t) คือ -csc ^ 2 (t) เนื่องจากเรามีฟังก์ชั่นและอนุพันธ์ของมันอยู่ในอินทิกรัลเดียวกันเราสามารถใช้การแทน au ดังนี้: u = cot (t) (du) / dt = -csc ^ 2 (t) du = -csc ^ 2 (t) dt เราสามารถแปลง csc บวก ^ 2 (t) เป็นลบเช่นนี้: -3int (-csc ^ 2 (t)) / cot (t) dt และใช้การแทนที่: -3int (du) / u เรารู้ว่า int (du) / u = lnabs (u) + C ดังนั้นการประเมินอินทิกรัลจึงเสร็จสิ้น เราเพียงต้องการย้อนกลับตัวสำรอ