ตอบ:
ใช้
คำอธิบาย:
ก่อนอื่นให้สังเกตว่าเพราะ
ตอนนี้ - และนี่คือส่วนที่สำคัญที่สุด - สังเกตว่าอนุพันธ์ของ
เราสามารถแปลงค่าบวก
และใช้การทดแทน:
เรารู้ว่า
และนั่นคือทั้งหมดที่
ตอบ:
คำอธิบาย:
จำไว้
ดังนั้น
ในขณะที่เราสามารถหาได้ในตารางของอินทิกรัล
(เช่นสารบัญที่มี Csc (ขวาน) ในคณิตศาสตร์ SOS:
เราได้ผลลัพธ์นี้
คุณจะรวม int x ^ 2 e ^ (- x) dx โดยใช้การรวมเป็นส่วน ๆ ได้อย่างไร
Intx ^ 2e ^ (- x) dx = -e ^ (- x) (x ^ 2 + 2x + 2) + C การรวมโดยชิ้นส่วนบอกว่า: intv (du) / (dx) = uv-intu (dv) / (dx) u = x ^ 2; (du) / (dx) = 2x (dv) / (dx) = e ^ (- x); v = -e ^ (- x) intx ^ 2e ^ (- x) dx = -x ^ 2e ^ (- x) -int-2xe ^ (- 2x) dx ทีนี้เราทำสิ่งนี้: int-2xe ^ (- 2x) dx u = 2x; (du) / (dx) = 2 (dv ) / (dx) = - e ^ (- x); v = e ^ (- x) int-2xe ^ (- x) dx = 2xe ^ (- x) -int2e ^ (- x) dx = 2xe ^ ( -x) + 2e ^ (- x) intx ^ 2e ^ (- x) dx = -x ^ 2e ^ (- x) - (2xe ^ (- x) + 2e ^ (- x)) = - x ^ 2e ^ (- x) -2xe ^ (- x) -2e ^ (- x) + C = -e ^ (- x) (x ^ 2 + 2x + 2) + C
คุณจะรวม int ln (x) / x dx โดยใช้การรวมเป็นส่วน ๆ ได้อย่างไร
Intln (x) / xdx = ln (x) ^ 2/4 การรวมโดยส่วนต่าง ๆ เป็นความคิดที่ไม่ดีที่นี่คุณจะมี intln (x) / xdx อยู่ที่ไหนสักแห่ง มันเป็นการดีกว่าที่จะเปลี่ยนตัวแปรที่นี่เพราะเรารู้ว่าอนุพันธ์ของ ln (x) คือ 1 / x เราบอกว่า u (x) = ln (x), มันหมายความว่า du = 1 / xdx ตอนนี้เราต้องรวม intudu intudu = u ^ 2/2 ดังนั้น intln (x) / xdx = ln (x) ^ 2/2
คุณจะรวม int dx / (x ^ 2 + 1) ^ 2 โดยใช้การแทนที่ตรีโกณฯ ได้อย่างไร
Int dx / (x ^ 2 + 1) ^ 2 = (1/2) (tan ^ -1 (x) + x / (1 + x ^ 2)) int dx / (x ^ 2 + 1) ^ 2 ใช้ x = tan (a) dx = sec ^ 2 (a) da intdx / (x ^ 2 + 1) ^ 2 = int (sec ^ 2 (a) da) / (1 + tan ^ 2a) ^ 2 ใช้ข้อมูลประจำตัว 1 + tan ^ 2 (a) = วินาที ^ 2 (a) intdx / (x ^ 2 + 1) ^ 2 = int (วินาที ^ 2 (a) da) / วินาที ^ 4 (a) = int (da) / sec ^ 2 (a) = int cos ^ 2 (a) da = int ((1 + cos (2a)) / 2) da = (1/2) (int (da) + int cos (2a) da) = (1/2) (a + sin (2a) / 2) = (1/2) (a + (2sin (a) cos (a)) / 2) = (1/2) (a + sin (a) cos (a) เรารู้ว่า a = tan ^ -1 (x) sin (a) = x / (sqrt (1 + x ^ 2) cos (a) = x / (sqrt (1 + x ^ 2 int dx / (x ^ 2 + 1)