เหตุใดความตึงเครียดจึงน้อยลงหากสตริงขนานกับโต๊ะในห้องแล็บ

เหตุใดความตึงเครียดจึงน้อยลงหากสตริงขนานกับโต๊ะในห้องแล็บ
Anonim

ปล่อย # M # เป็นมวลของบล็อกและ # ม # เป็นมวลที่ถูกระงับด้วยสตริงที่แยกไม่ออก # หมู่ # สัมประสิทธิ์แรงเสียดทาน # theta # เป็นมุมที่สร้างขึ้นโดยสตริงกับแนวนอนที่ไหน #theta> = 0 # และ # T # เป็นความตึงเครียด (แรงปฏิกิริยา) ในสาย จะได้รับบล็อกที่มีการเคลื่อนไหว ปล่อย # A # เป็นการเร่งความเร็ว เมื่อมวลทั้งสองเข้าร่วมกับสตริงทั่วไปมวลแขวนลอยก็จะเคลื่อนที่ลงด้วยความเร่งเดียวกัน

การยึดทิศตะวันออกเป็นบวก # x #-axis และ North เป็นค่าบวก # Y #-แกน.

กองกำลังภายนอกที่รับผิดชอบต่อขนาดของการเร่งความเร็วของมวลเมื่อพิจารณาว่าเป็นวัตถุเดี่ยว

# (M + เมตร) = mgcostheta-MU (MG-mgsintheta) # ……(1)

สำหรับ Block มันคือ # x # องค์ประกอบของความตึงเครียดซึ่งรับผิดชอบการเร่งความเร็ว

# A = T_x / M #

# => A = (Tcostheta) / M #

# => T = (MA) / costheta #

# => T = (M (mgcostheta-MU (MG-mgsintheta))) / ((M + m) costheta) # …..(2)

เขียนใหม่เป็น

# T = a-b / costheta + ctantheta #

ที่ไหน # a, b และ c # พารามิเตอร์ของระบบที่กำหนดด้วยความช่วยเหลือของ (2) ไม่ขึ้นอยู่กับ # theta #

เรามาดูกันว่า # T # ขึ้นอยู่กับคำสองคำที่เกี่ยวข้อง # theta #

  1. # -1 / costheta #. สำหรับ # T # เป็นจำนวนที่น้อยกว่า # costheta # คำจะต้องมีค่าสูงสุด เรารู้ว่า # costheta # มีค่าสูงสุด #=1# สำหรับ # theta = 0 ^ @ #
  2. # tantheta #. สำหรับ # T # เป็นจำนวนน้อย # tantheta # เทอมต้องเป็นศูนย์ เรารู้ว่า # tantheta # มีค่า #=0# สำหรับ # theta = 0 ^ @ #.

ดังนั้นเราจะเห็นว่าความตึงเครียดจะลดลงหากสายเชื่อมต่อบล็อกขนานกับโต๊ะทดลอง