ตอบ:
คำอธิบาย:
# y = 1 / 4x "อยู่ในรูปแบบ" สี (สีน้ำเงิน) "ความชัน - จุดตัด" # นั่นคือ.
#COLOR (สีแดง) (บาร์ (UL (| สี (สีขาว) (2/2) สี (สีดำ) (y = mx + ข) สี (สีขาว) (2/2) |))) # โดยที่ m แทนความชันและ b, จุดตัดแกน y
# rArry = 1 / 4x "มีความชัน" = m = 1/4 # ความชันของเส้นตั้งฉากกับอันนี้คือ
#color (สีน้ำเงิน) "the reciprocal เชิงลบ" # ของม
#rArrm _ ("ตั้งฉาก") = - 1 / (1/4) = - 4 # สมการของเส้นตรง
#color (สีน้ำเงิน) "ฟอร์มจุดชัน" # คือ.
#COLOR (สีแดง) (บาร์ (UL (| สี (สีขาว) (2/2) สี (สีดำ) (y-y_1 = m (x-x_1)) สี (สีขาว) (2/2) |))) # ที่ไหน
# (x_1, y_1) "คือจุดบนบรรทัด" #
# "using" m = -4 "และ" (x_1, y_1) = (- 7,4) #
# Y-4 = -4 (x - (- 7)) #
# rArry-4 = -4 (x + 7) larrcolor (สีแดง) "ในรูปแบบจุด - ลาด" #
# "การกระจายและการทำให้ง่ายขึ้น" #
# Y-4 = -4x-28 #
# rArry = -4x-24larrcolor (สีแดง) "ในรูปแบบลาดชัน"
สมการของเส้นตั้งฉากกับ y = -1 / 15x ที่ผ่าน (-1,4) คืออะไร?
การใช้สมการเส้นทั่วไป y = mx + b คุณใส่จุดข้อมูลที่รู้จักในสมการด้วยความลาดชันผกผันซึ่งตั้งฉากตามนิยามแล้วแก้มันสำหรับเทอม 'b'
สมการของเส้นตั้งฉากกับ y = -1 / 16x ที่ผ่าน (3,4) คืออะไร?
สมการของเส้นที่ต้องการคือ y = 16x-44 สมการของเส้น y = - (1/16) x อยู่ในรูปของความชัน - จุดตัดแกน y = mx + c, โดยที่ m คือความชันและ c คือจุดตัดบนแกน y ดังนั้นความชันของมันคือ - (1/16) เมื่อผลคูณของความชันของเส้นตั้งฉากสองเส้นคือ -1 ความชันของเส้นตั้งฉากกับ y = - (1/16) x คือ 16 และรูปแบบความชัน - จุดตัดของสมการของเส้นตั้งฉากจะเท่ากับ y = 16x + c เมื่อบรรทัดนี้ผ่าน (3,4) วางสิ่งเหล่านี้เป็น (x, y) ใน y = 16x + c เราจะได้ 4 = 16 * 3 + c หรือ c = 4-48 = -44 ดังนั้นสมการของเส้นที่ต้องการคือ y = 16x-44
สมการของเส้นตั้งฉากกับ y = 13x ที่ผ่าน (7,8) คืออะไร?
Y = -1 / 13x + 111 เนื่องจากเส้นตั้งฉากกับอีกเส้นหนึ่งที่มีความชัน 13 ความชันของมันจะอยู่ตรงข้ามกับส่วนกลับของ 13 หรือ -1/13 ดังนั้นเส้นที่เราพยายามหามีสมการ y = -1 / 13x + b เนื่องจากมันผ่าน (7,8) มันจึงถือว่า 8 = -7/13 + b => b = 111 ดังนั้นสมการสุดท้ายคือ y = -1 / 13x + 111