คุณมีสามลูกเต๋า: หนึ่งสีแดง (R) หนึ่งสีเขียว (G) และหนึ่งสีฟ้า (B) เมื่อลูกเต๋าทั้งสามม้วนในเวลาเดียวกันคุณจะคำนวณความน่าจะเป็นของผลลัพธ์ต่อไปนี้ได้อย่างไร: 6 (R) 6 (G) 6 (B)?
การทอยลูกเต๋าสามลูกเป็นการทดลองอิสระ ความน่าจะเป็นที่ถามคือ P (6R, 6G, 6B) = 1/6 · 1/6 · 1/6 = 1/216 = 0.04629
คุณมีสามลูกเต๋า: หนึ่งสีแดง (R) หนึ่งสีเขียว (G) และหนึ่งสีฟ้า (B) เมื่อลูกเต๋าทั้งสามม้วนในเวลาเดียวกันคุณจะคำนวณความน่าจะเป็นของผลลัพธ์ต่อไปนี้ได้อย่างไร: 6 (R) 5 (G) 4 (B)
1/216 สำหรับแต่ละลูกเต๋ามีโอกาสเพียงหนึ่งเดียวจากหกที่จะได้รับผลลัพธ์ที่ต้องการ การคูณอัตราต่อรองสำหรับแต่ละลูกเต๋าให้ 1/6 xx 1/6 xx 1/6 = 1/216
คุณมีสามลูกเต๋า: หนึ่งสีแดง (R) หนึ่งสีเขียว (G) และหนึ่งสีฟ้า (B) เมื่อทอยลูกเต๋าสามลูกในเวลาเดียวกันคุณจะคำนวณความน่าจะเป็นของผลลัพธ์ต่อไปนี้ได้อย่างไร: หมายเลขเดียวกันกับลูกเต๋าทั้งหมด
โอกาสที่จะได้หมายเลขเดียวกันบนทั้ง 3 ลูกเต๋าคือ 1/36 ด้วยการตายเพียงครั้งเดียวเรามี 6 ผลลัพธ์ เพิ่มอีกหนึ่งตอนนี้เรามี 6 ผลลัพธ์สำหรับแต่ละผลลัพธ์ของตายเก่าหรือ 6 ^ 2 = 36 สิ่งเดียวกันนี้เกิดขึ้นกับที่สามนำมาซึ่งมากถึง 6 ^ 3 = 216 ผลลัพธ์ที่ไม่ซ้ำกันหกประการที่ลูกเต๋ากลิ้งทั้งหมด หมายเลขเดียวกัน: 1 1 1 2 2 2 3 3 4 4 4 5 5 5 และ 6 6 6 ดังนั้นโอกาสคือ 6/216 หรือ 1/36