สองมุมของรูปสามเหลี่ยมมีมุมของ (pi) / 3 และ (pi) / 4 หากด้านใดด้านหนึ่งของรูปสามเหลี่ยมมีความยาว 8 ด้านขอบเขตของรูปสามเหลี่ยมที่ยาวที่สุดที่เป็นไปได้คืออะไร

สองมุมของรูปสามเหลี่ยมมีมุมของ (pi) / 3 และ (pi) / 4 หากด้านใดด้านหนึ่งของรูปสามเหลี่ยมมีความยาว 8 ด้านขอบเขตของรูปสามเหลี่ยมที่ยาวที่สุดที่เป็นไปได้คืออะไร
Anonim

ตอบ:

ปริมณฑลที่เป็นไปได้ยาวที่สุด = 28.726

คำอธิบาย:

สามมุมคือ # pi / 3, pi / 4, (5pi) / 12 #

เพื่อให้ได้เส้นรอบวงที่ยาวที่สุดให้แบ่งด้านที่ 8 เป็นมุมที่น้อยที่สุด

# 8 / sin (pi / 4) = b / sin (pi / 3) = c / sin ((5pi) / 12) #

#b = (8 * sin (pi / 3)) / sin (pi / 4) = (8 * (sqrt3 / 2)) / (1 / sqrt2) #

# b = 8sqrt (3/2) = 9.798 #

#c = (8 * sin (5pi) / (12)) / sin (pi / 4) = 8sqrt2 * sin ((5pi) / 12) = 10.928 #

ปริมณฑลที่ยาวที่สุดที่เป็นไปได้ # = 8 + 9.798 + 10.928 = 28.726#