ตอบ:
ความกว้างของ 'สูงสุดถึงสูงสุด' ของ
คำอธิบาย:
โปรดจำไว้ว่า
ดังนั้น
ความกว้างของ 'สูงสุดถึงสูงสุด' ของ funtion เป็นระยะจะวัดระยะทางระหว่างค่าสูงสุดและค่าต่ำสุดในช่วงเวลาเดียว
ดังนั้นความกว้างของ 'สูงสุดถึงสูงสุด' ของ
เราสามารถดูได้จากกราฟของ
กราฟ {1 / 2cosx -0.425, 6.5, -2.076, 1.386}
แอมพลิจูดของ f (x) = cos x คืออะไร?
แอมพลิจูดของโคไซน์คือ 1 ไซน์และโคไซน์มีค่าช่วงเป็น [-1, +1] จากนั้นแอมพลิจูดถูกกำหนดให้เป็นขนาดของระยะทางระหว่างจุดสูงสุดและแกน x ดังนั้น 1
แอมพลิจูดของ f (x) = 4sin (x) cos (x) คืออะไร?
คำตอบคือ: 2. แอมพลิจูดของฟังก์ชันคาบคือตัวเลขที่คูณฟังก์ชันเอง ด้วยสูตรสองมุมของไซนัสที่บอกว่า: sin2alpha = 2sinalphacosalpha เรามี: y = 2 * 2sinxcosx = 2sin2x ดังนั้นแอมพลิจูดคือ 2 นี่คือฟังก์ชันไซนัส: กราฟ {sinx [-10, 10, -5, 5]} นี่คือฟังก์ชัน y = sin2x (ระยะเวลากลายเป็นไพ): กราฟ {sin (2x) [-10 , 10, -5, 5]} และนี่คือฟังก์ชัน y = 2sin2x: กราฟ {2sin (2x) [-10, 10, -5, 5]}
แอมพลิจูดของ y = -1 / 3sinx คืออะไร?
แอมพลิจูดของ y คือ: 1/3 Amplitude A ของฟังก์ชัน y: "" A = abs (-1/3) = 1/3