ตอบ:
คำอธิบาย:
จากการมุ่งเน้นที่กำหนด
คำนวณจุดสุดยอด
จุดสุดยอด
ใช้แบบฟอร์มจุดสุดยอด
กราฟของ
กราฟ {(y-x ^ 2/10 + 2x + 2/3) (y + 14) = 0 -35,35, -25,10}
สมการในรูปแบบมาตรฐานของพาราโบลาที่มีโฟกัสอยู่ที่ (-10,8) และ directrix ของ y = 9 คืออะไร
สมการของพาราโบลาคือ (x + 10) ^ 2 = -2y + 17 = -2 (y-17/2) จุดใด ๆ (x, y) บนพาราโบลามีระยะเท่ากันจากการโฟกัส F = (- 10,8 ) และ directrix y = 9 ดังนั้น sqrt ((x + 10) ^ 2 + (y-8) ^ 2) = y-9 (x + 10) ^ 2 + (y-8) ^ 2 = (y- 9) ^ 2 (x + 10) ^ 2 + y ^ 2-16y + 64 = y ^ 2-18y + 81 (x + 10) ^ 2 = -2y + 17 = -2 (y-17/2) กราฟ {((x + 10) ^ 2 + 2y-17) (y-9) = 0 [-31.08, 20.25, -9.12, 16.54]}
สมการในรูปแบบมาตรฐานของพาราโบลาที่มีโฟกัสอยู่ที่ (-10, -9) และ directrix ของ y = -4 คืออะไร
สมการของพาราโบลาคือ y = -1/10 (x + 10) ^ 2 -6.5 โฟกัสอยู่ที่ (-10, -9) Directrix: y = -4 เวอร์เท็กซ์อยู่ที่จุดกึ่งกลางระหว่างโฟกัสและไดเรกทริกซ์ ดังนั้นจุดยอดจึงอยู่ที่ (-10, (-9-4) / 2) หรือ (-10, -6.5) และพาราโบลาเปิดลง (a = -ive) สมการของพาราโบลาคือ y = a (xh) ^ 2 = k หรือ y = a (x - (- 10)) ^ 2+ (-6.5) หรือ y = a (x + 10) ^ 2 -6.5 โดยที่ (h, k) เป็นจุดยอด ระยะห่างระหว่างจุดยอดและ directrix, d = 6.5-4.0 = 2.5 = 1 / (4 | a |): a = -1 / (4 * 2.5) = -1/10 ดังนั้นสมการของพาราโบลาคือ y = -1/10 (x + 10) ^ 2 -6.5 กราฟ {-1/10 (x + 10) ^ 2 - 6.5 [-40, 40, -20, 20]} [ตอบ]
สมการในรูปแบบมาตรฐานของพาราโบลาที่มีโฟกัสอยู่ที่ (11, -5) และ directrix ของ y = -19 คืออะไร?
Y = 1 / 28x ^ 2-11 / 14x-215/28> "สำหรับทุกจุด" (x, y) "บนพาราโบลา" "การโฟกัสและไดเร็กตอรี่นั้นเท่ากัน" สี (สีน้ำเงิน) "โดยใช้สูตรระยะทาง" sqrt ((x-11) ^ 2 + (y + 5) ^ 2) = | Y + 19 | สี (สีน้ำเงิน) "กำลังสองข้าง" (x-11) ^ 2 + (y + 5) ^ 2 = (y + 19) ^ 2 rArrx ^ 2-22x + 121cancel (+ y ^ 2) + 10y + 25 = ยกเลิก (y ^ 2) + 38y + 361 rArr-28y = -x ^ 2 + 22x + 215 rArry = 1 / 28x ^ 2-11 / 14x-215/28