ตอบ:
คำอธิบาย:
คุณจะหาอนุพันธ์ของ f (x) = 1 / (x-1) ได้อย่างไร?
F '(x) = - (x-1) ^ - 2 f (x) = (x-1) ^ - 1 f' (x) = - 1 * (x-1) ^ (- 1-1) * d / dx [x-1] สี (ขาว) (f '(x)) = - (x-1) ^ - 2
คุณจะหาอนุพันธ์ของ y = e ^ (x ^ (1/2)) ได้อย่างไร?
E ^ sqrt (x) / (2sqrt (x)) การทดแทนที่นี่จะช่วยได้อย่างมาก! สมมุติว่า x ^ (1/2) = u ตอนนี้ y = e ^ u เรารู้ว่าอนุพันธ์ของ e ^ x คือ e ^ x ดังนั้น; dy / dx = e ^ u * (du) / dx โดยใช้กฎลูกโซ่ d / dx x ^ (1/2) = (du) / dx = 1/2 * x ^ (- 1/2) = 1 / ( 2sqrt (x)) ตอนนี้เสียบ (du) / dx และ u กลับเข้าไปในสมการ: D dy / dx = e ^ sqrt (x) / (2sqrt (x))
คุณจะหาอนุพันธ์ของ 0 โดยใช้คำจำกัดความ จำกัด ได้อย่างไร
อนุพันธ์ของศูนย์คือศูนย์มันสมเหตุสมผลแล้วเพราะมันเป็นฟังก์ชั่นคงที่ นิยามคำจำกัดความของอนุพันธ์: f '(x) = lim_ (hrarr0) (f (x + h) - f (x)) / h Zero เป็นฟังก์ชันของ x ซึ่ง f (x) = 0 AA x ดังนั้น f (x + h) = f (x) = 0 f '(x) = lim_ (hrarr0) (0-0) / h = lim_ (hrarr0) 0 = 0