แก้ระบบสมการต่อไปนี้: [((1), sqrt (2) x + sqrt (3) y = 0), ((2), x + y = sqrt (3) -sqrt (2))]?

แก้ระบบสมการต่อไปนี้: [((1), sqrt (2) x + sqrt (3) y = 0), ((2), x + y = sqrt (3) -sqrt (2))]?
Anonim

ตอบ:

# {(x = (3sqrt (2) -2sqrt (3)) / (sqrt (6) -2)), (y = (sqrt (6) -2) / (sqrt (2) -sqrt (3))):} #

คำอธิบาย:

จาก #(1)# เรามี

#sqrt (2) x + sqrt (3) y = 0 #

หารทั้งสองข้างด้วย #sqrt (2) # ให้เรา

#x + sqrt (3) / sqrt (2) y = 0 "(*)" #

หากเราลบ #'(*)'# จาก #(2)# เราได้รับ

# x + y- (x + sqrt (3) / sqrt (2) y) = sqrt (3) -sqrt (2) - 0 #

# => (1-sqrt (3) / sqrt (2)) y = sqrt (3) -sqrt (2) #

# => y = (sqrt (3) -sqrt (2)) / (1-sqrt (3) / sqrt (2)) = (sqrt (6) -2) / (sqrt (2) -sqrt (3)) #

หากเราแทนที่ค่าที่เราพบ # Y # กลับเข้ามา #'(*)'# เราได้รับ

#x + sqrt (3) / sqrt (2) * (sqrt (6) -2) / (sqrt (2) -sqrt (3)) = 0 #

# => x + (3sqrt (2) -2sqrt (3)) / (2-sqrt (6)) = 0 #

# => x = - (3sqrt (2) -2sqrt (3)) / (2-sqrt (6)) = (3sqrt (2) -2sqrt (3)) / (sqrt (6) -2) #

ดังนั้นเรามาถึงทางออก

# {(x = (3sqrt (2) -2sqrt (3)) / (sqrt (6) -2)), (y = (sqrt (6) -2) / (sqrt (2) -sqrt (3))):} #