ตอบ:
ฉันได้
คำอธิบาย:
ฉันตีความคำถามเช่นนี้:
ดอกเบี้ยที่จ่ายทั้งหมดจะเป็น:
ที่ให้ในแต่ละปี:
เราใช้สัดส่วนในการเขียนในแง่ของ
จัดเรียง:
ตอบ:
คำตอบคือไม่มีตัวเลือกที่คุณระบุไว้ แต่ถ้าเราต้องทำแบบเดียวกันต่อไปก็จะเป็น 40% ของอัตราดอกเบี้ยเงินกู้
คำอธิบาย:
ดอกเบี้ย 7%
ดอกเบี้ย 8%
ดอกเบี้ย 9%
ดอกเบี้ย 10%
ดังนั้นจึงไม่มีตัวเลือกที่คุณเลือกไว้ในรายการ
ดังนั้นหากเราต้องทำเปอร์เซ็นต์รายการต่อไปในที่สุดเราก็พบว่า:
ดอกเบี้ย 40%
ค่าใช้จ่ายของเงินกู้ $ 294 ในช่วงหนึ่งปีคือ $ 8.82 อัตราเงินกู้เป็นเท่าไหร่?
อัตราดอกเบี้ย R = 3% เงินต้น P = $ 294, ระยะเวลา N = 1 ปี, I ดอกเบี้ย = $ 8.82 เพื่อหาอัตราดอกเบี้ย R% R = (100 * I) / (P * N) R = (100 * ยกเลิก (8.82)) / (ยกเลิก (294) ^ color (สีแดง) (33.33) * 1) R = 100 / 33.33 = 3%
รัศมีของวงกลมขนาดใหญ่นั้นยาวเป็นสองเท่าของรัศมีของวงกลมขนาดเล็ก พื้นที่ของโดนัทคือ 75 ปี่ ค้นหารัศมีของวงกลมขนาดเล็ก (ภายใน)?
รัศมีที่เล็กกว่าคือ 5 ให้ r = รัศมีของวงกลมด้านใน รัศมีของวงกลมที่ใหญ่กว่าคือ 2r จากการอ้างอิงเราได้สมการสำหรับพื้นที่ของห่วง: A = pi (R ^ 2-r ^ 2) แทน 2r สำหรับ R: A = pi ((2r) ^ 2- r ^ 2) ลดความซับซ้อน: A = pi ((4r ^ 2- r ^ 2) A = 3pir ^ 2 ทดแทนในพื้นที่ที่กำหนด: 75pi = 3pir ^ 2 แบ่งทั้งสองด้านด้วย 3pi: 25 = r ^ 2 r = 5
สมการของเส้นที่เป็นเรื่องปกติของเส้นโค้งขั้วโลก f (theta) = - 5theta- sin ((3theta) / 2-pi / 3) + tan ((theta) / 2-pi / 3) ที่ theta = ปี่
บรรทัดคือ y = (6 - 60pi + 4sqrt (3)) / (9sqrt (3) -52) x + ((sqrt (3) (1 - 10pi) +2) ^ 2) / (9sqrt (3) - 52) พฤติกรรมของสมการนี้ได้มาจากกระบวนการที่ค่อนข้างยาว ก่อนอื่นฉันจะร่างขั้นตอนที่มาจะดำเนินการแล้วดำเนินการตามขั้นตอนเหล่านั้น เราได้รับฟังก์ชั่นในพิกัดเชิงขั้ว f (theta) เราสามารถหาอนุพันธ์, f '(theta), แต่เพื่อหาเส้นในพิกัดคาร์ทีเซียน, เราจะต้อง dy / dx เราสามารถค้นหา dy / dx โดยใช้สมการต่อไปนี้: dy / dx = (f '(theta) sin (theta) + f (theta) cos (theta)) / (f' (theta) cos (theta) - f ( theta) sin (theta)) จากนั้นเราจะเสียบความลาดชันนั้นลงในรูปแบบบรรทัดคาร์ทีเซียนมาตรฐาน: y = mx + b และแทรกพิกัดเชิงขั้วคาร