
ขีด จำกัด เมื่อ x เข้าใกล้ 0 จาก 1 / x คือเท่าใด

ไม่มีขีด จำกัด ตามธรรมดาแล้วไม่มีขีด จำกัด เนื่องจากข้อ จำกัด ด้านขวาและด้านซ้ายไม่เห็นด้วย: lim_ (x-> 0 ^ +) 1 / x = + oo lim_ (x-> 0 ^ -) 1 / x = -oo กราฟ {1 / x [-10, 10, -5, 5]} ... และโดยไม่ตั้งใจ? คำอธิบายข้างต้นอาจเหมาะสมสำหรับการใช้งานปกติที่เราเพิ่มสองวัตถุ + oo และ -oo ในบรรทัดจริง แต่นั่นไม่ใช่ตัวเลือกเดียว บรรทัด projective จริง RR_oo เพิ่มจุดเดียวไปยัง RR ซึ่งมีป้ายกำกับว่า oo คุณสามารถคิดว่า RR_oo เป็นผลมาจากการพับเส้นจริงรอบ ๆ เป็นวงกลมและเพิ่มจุดที่ทั้งสองเข้าร่วม "จบ" หากเราพิจารณา f (x) = 1 / x เป็นฟังก์ชันจาก RR (หรือ RR_oo) ถึง RR_oo เราสามารถกำหนด 1/0 = oo ซึ่งเป็นขีด จำกัด ที่กำหนดไว้เ
ขีด จำกัด เมื่อ x เข้าใกล้ 0 ของ tanx / x คือเท่าใด

1 lim_ (x-> 0) tanx / x กราฟ {(tanx) / x [-20.27, 20.28, -10.14, 10.13]} จากกราฟคุณจะเห็นว่าเป็น x-> 0, tanx / x เข้าใกล้ 1
ขีด จำกัด ของ 7/4 (x-1) ^ 2 เมื่อ x เข้าใกล้ 1 คืออะไร

Lim_ (x-> 1) 7/4 (x-1) ^ 2 = 0 เรารู้ว่า f (x) = 7/4 (x-1) ^ 2 = 0 ต่อเนื่องทั่วทั้งโดเมน ดังนั้น lim_ (x-> c) f (x) = f (c) สำหรับ x ทั้งหมดในโดเมนของ f ดังนั้น lim_ (x-> 1) 7/4 (x-1) ^ 2 = 7/4 (1-1) ^ 2 = 0