ตอบ:
จำนวนจริงทั้งหมดยกเว้น 7 และ -3
คำอธิบาย:
เมื่อคุณคูณสองฟังก์ชันเราจะทำอะไร
เรากำลังหาค่า f (x) และคูณด้วยค่า g (x) โดยที่ x ต้องเหมือนกัน อย่างไรก็ตามทั้งสองฟังก์ชั่นมีข้อ จำกัด 7 และ -3 ดังนั้นผลิตภัณฑ์ของทั้งสองฟังก์ชั่นจะต้องมี * ทั้งสอง ข้อ จำกัด *
โดยปกติเมื่อมีการดำเนินงานเกี่ยวกับฟังก์ชั่นถ้าฟังก์ชั่นก่อนหน้า (
นอกจากนี้คุณยังสามารถเห็นภาพนี้ได้ด้วยการสร้างฟังก์ชั่นที่มีเหตุผลสองค่าที่มีข้อ จำกัด ที่แตกต่างกันจากนั้นคูณพวกเขาและดูว่าแกนที่ถูก จำกัด จะอยู่ที่ไหน
หาก f (x) = frac {x - 3} {x} และ g (x) = 5x-4 โดเมนของ (f * g) (x) คืออะไร
X inR ก่อนอื่นให้หาว่า (f * g) (x) ทำอะไรเพียงแค่ใส่ฟังก์ชั่น g (x) ลงในทั้งสองจุด x ใน f (x) (f * g) (x) = (5x-4 -3) / (5x-4) ดังนั้น (f * g) (x) = (5x-7) / (5x-4) เราทราบว่าสำหรับฟังก์ชั่นเหตุผลโดยทั่วไป 1 / x เมื่อตัวส่วนเท่ากับ 0 มี ไม่มีเอาต์พุตดังนั้นเราต้องคิดออกเมื่อ 5x-4 = 0 5x = 4 ดังนั้น x = 4/5 ดังนั้นโดเมนจึงเป็น reals ทั้งหมดนอกเหนือจาก x = 4/5 x inR
โดเมนของ {(1,2), (2,6), (3,5), (4,6), (5,2)} คืออะไร?
โดเมนคือ {1, 2, 3, 4, 5} สำหรับคอลเลกชันของคู่ที่แยกกัน (สี (แดง) (x), สี (สีน้ำเงิน) (f (x))) ใน {"ชุดคู่ของคำสั่งบางคู่"} โดเมนคือชุดของค่าสี (สีแดง) (x) ช่วงคือชุดของค่าสี (สีน้ำเงิน) (f (x)) (สี (แดง) (x), สี (สีน้ำเงิน) (f) () ใน {(color (red) (1), color (blue) (2)), (color (red) (2), color (blue) (6)), (color (red) (3), color (blue ) (5)), (สี (แดง) (4), สี (สีน้ำเงิน) (6)), (สี (แดง) (5), สี (สีน้ำเงิน) (2))}
โดเมนของฟังก์ชันที่รวมกันคือ h (x) = f (x) - g (x) ถ้าโดเมนของ f (x) = (4,4.5] และโดเมนของ g (x) คือ [4, 4.5 )?
โดเมนคือ D_ {f-g} = (4,4.5) ดูคำอธิบาย (f-g) (x) สามารถคำนวณได้เฉพาะสำหรับ x ที่มีการกำหนดทั้ง f และ g ดังนั้นเราสามารถเขียนได้: D_ {f-g} = D_fnnD_g ที่นี่เรามี D_ {f-g} = (4,4.5] nn [4,4.5) = (4,4.5)