ตอบ:
คำอธิบาย:
Quadrant แรก
ในจตุภาคแรกด้วยเช่นกัน
ตอนนี้
หากทีต้าอยู่ในจตุภาคที่สองเป็น
เพราะบาปใด
ที่นี่
ค้นหาค่าของ theta, ถ้า, Cos (theta) / 1 - sin (theta) + cos (theta) / 1 + sin (theta) = 4?
Theta = pi / 3 หรือ 60 ^ @ Okay เราได้รับ: costheta / (1-sintheta) + costheta / (1 + sintheta) = 4 ตอนนี้เราไม่สนใจ RHS costheta / (1-sintheta) + costheta / (1 + sintheta) (Costheta (1 + sintheta) + costheta (1-sintheta)) / ((1-sintheta) (1 + sintheta)) (Costheta (1-sintheta) ) + (1 + sintheta))) / (1-sin ^ 2theta) (costheta (1-sintheta + 1 + sintheta)) / (1-sin ^ 2theta) (2costheta) / (1-sin ^ 2theta) ตาม อัตลักษณ์ของพีทาโกรัสบาป ^ 2theta + cos ^ 2theta = 1 ดังนั้น: cos ^ 2theta = 1-sin ^ 2theta ทีนี้เมื่อเรารู้แล้วเราสามารถเขียนได้: (2costheta) / cos ^ 2theta 2 / costheta = 4 costheta / 2 = 1/4 Costheta = 1/2 theta = cos
ปล่อยให้ a, b, c> 0 และ a, b, c อยู่ใน A.P a ^ 2, b ^ 2, c ^ 2 อยู่ใน G.P จากนั้นเลือกอันที่ถูกต้อง? (a) a = b = c, (b) a ^ 2 + b ^ 2 = c ^ 2, (c) a ^ 2 + c ^ 2 = 3 b ^ 2, (d) ไม่มีสิ่งเหล่านี้
A = b = c คำศัพท์ทั่วไปของลำดับ AP สามารถแทนด้วย: sf ({a, a + d, a + 2d}) เราได้รับการบอกว่า {a, b, c} และเราทราบว่าหากเรารับ คำที่สูงกว่าและลบเทอมก่อนหน้านั้นเราจะได้ผลต่างที่เหมือนกัน ดังนั้น c-b = b-a: 2b = a + c ..... [A] คำทั่วไปของลำดับ GP สามารถแสดงได้โดย: sf ({a, ar, ar ^ 2}) เราได้รับการบอกว่า {a ^ 2, b ^ 2, c ^ 2} และเราทราบว่าถ้าเราใช้คำที่สูงกว่าและหารด้วยคำก่อนหน้านี้เราจะได้อัตราส่วนทั่วไปดังนี้: c ^ 2 / b ^ 2 = b ^ 2 / a ^ 2 => c / b = b / a (เช่น a, b, c gt 0): b ^ 2 = ac ..... [B] การแทนที่ [A] เป็น [B] เรามี: ((a + c) / 2) ^ 2 = ac: a ^ 2 + 2ac + c ^ 2 = 4ac: a ^ 2 - 2ac + c ^ 2 = 0: (a-c) ^ 2 = 0: a
คุณจะหาโดเมนและช่วงของฟังก์ชั่นเป็นชิ้น ๆ ได้ y = x ^ 2 ถ้า x <0, y = x + 2 ถ้า 0 x 3, y = 4 ถ้า x> 3?
"โดเมน:" (-oo, oo) "ช่วง:" (0, oo) วิธีที่ดีที่สุดในการเริ่มสร้างกราฟฟังก์ชั่นทีละชิ้นโดยการอ่านคำสั่ง "if" ก่อนและคุณจะลดโอกาสในการทำผิดพลาดโดยการทำ ดังนั้น. ที่ถูกกล่าวว่าเรามี: y = x ^ 2 "ถ้า" x <0 y = x + 2 "ถ้า" 0 <= x <= 3 y = 4 "ถ้า" x> 3 มันสำคัญมากที่จะดู "ของคุณมากขึ้น / น้อยกว่าหรือเท่ากับ "สัญญาณเนื่องจากจุดสองจุดบนโดเมนเดียวกันจะทำให้เกิดขึ้นเพื่อให้กราฟไม่ใช่ฟังก์ชัน อย่างไรก็ตาม: y = x ^ 2 เป็นรูปโค้งที่เรียบง่ายและคุณมักรู้ว่ามันเริ่มต้นที่จุดเริ่มต้น (0,0) และขยายไปเรื่อย ๆ ในทั้งสองทิศทาง อย่างไรก็ตามข้อ จำกัด ของเราคือ &quo