ตอบ:
คำอธิบาย:
คุณแสดงออกถึง cos (4theta) ในแง่ของ cos (2theta) ได้อย่างไร?
Cos (4theta) = 2 (cos (2theta)) ^ 2-1 เริ่มต้นด้วยการแทนที่ 4theta ด้วย 2theta + 2theta cos (4theta) = cos (2theta + 2theta) รู้ว่า cos (a + b) = cos (a) cos ( b) -sin (a) sin (b) จากนั้น cos (2theta + 2theta) = (cos (2theta)) ^ 2- (sin (2theta)) ^ 2 รู้ว่า (cos (x)) ^ 2+ (sin ( x)) ^ 2 = 1 จากนั้น (sin (x)) ^ 2 = 1- (cos (x)) ^ 2 rarr cos (4theta) = (cos (2theta)) ^ 2- (1- (cos (2theta)) ) ^ 2) = 2 (cos (2theta)) ^ 2-1
คุณแสดง cos (pi / 3) * sin ((3 pi) / 8) โดยไม่ใช้ผลิตภัณฑ์ของฟังก์ชันตรีโกณมิติได้อย่างไร
Cos (pi / 3) * sin ((3pi) / 8) = 1/2 * sin ((17pi) / 24) + 1/2 * sin (pi / 24) เริ่มต้นด้วยสี (แดง) ("Sum and Difference" สูตร ") sin (x + y) = sin x cos y + cos x sin y" "" "สมการที่ 1 sin (xy) = sin x cos y - cos x sin y" "" "สมการที่ 2 ลบที่ 2 จาก 1 สมการ sin (x + y) -sin (xy) = 2cos x sin y 2cos x sin y = sin (x + y) -sin (xy) cos x sin y = 1/2 sin (x + y) -1 / 2 sin (xy) ณ จุดนี้ให้ x = pi / 3 และ y = (3pi) / 8 จากนั้นใช้ cos x sin y = 1/2 sin (x + y) -1/2 sin (xy) cos (pi / 3) * sin ((3pi) / 8) = 1/2 * sin ((17pi) / 24) + 1/2 * sin (pi / 24) God bless America ...
คุณแสดง cos (pi / 3) * sin ((5 pi) / 8) โดยไม่ใช้ผลิตภัณฑ์ของฟังก์ชันตรีโกณมิติได้อย่างไร
อาจเป็น "การโกง" แต่ฉันจะแทนที่ 1/2 แทน cos ( pi / 3) คุณน่าจะใช้รหัสประจำตัว cos a sin b = (1/2) (sin (a + b) -sin (a-b)) ใส่ a = pi / 3 = {8 pi} / 24, b = {5 pi} / 8 = {15 pi} / 24 จากนั้น cos ( pi / 3) sin ({5 * pi} / 8) = (1/2) (sin ({23 * pi} / 24) -sin ({- 7 * pi} / 24)) = (1/2) (sin ({ pi} / 24) + sin ({7 * pi} / 24)) ซึ่งในบรรทัดสุดท้ายเราใช้ sin ( pi-x) = sin (x) และ sin ( -x) = - บาป (x) อย่างที่คุณเห็นนี่เป็นสิ่งที่ไม่คุ้มค่าเมื่อเทียบกับการใส่ cos (pi / 3) = 1/2 ความสัมพันธ์ระหว่างผลรวมของตรีโกณมิติและความแตกต่างของผลิตภัณฑ์มีประโยชน์มากขึ้นเมื่อคุณไม่สามารถประเมินปัจจัยใด ๆ ในผลิตภัณฑ์ได้