มุมสองมุมของสามเหลี่ยมมีมุมของ pi / 8 และ pi / 3 หากด้านใดด้านหนึ่งของรูปสามเหลี่ยมมีความยาวเป็น 2 ขอบเขตที่ยาวที่สุดของรูปสามเหลี่ยมคืออะไร

มุมสองมุมของสามเหลี่ยมมีมุมของ pi / 8 และ pi / 3 หากด้านใดด้านหนึ่งของรูปสามเหลี่ยมมีความยาวเป็น 2 ขอบเขตที่ยาวที่สุดของรูปสามเหลี่ยมคืออะไร
Anonim

ตอบ:

ขอบเขตสูงสุดคือ: #11.708# ทศนิยม 3 ตำแหน่ง

คำอธิบาย:

เมื่อเป็นไปได้วาดไดอะแกรม ช่วยอธิบายสิ่งที่คุณติดต่อด้วย

โปรดสังเกตว่าฉันได้ติดป้ายจุดยอดเช่นเดียวกับตัวพิมพ์ใหญ่และด้านข้างด้วยตัวอักษรขนาดเล็กสำหรับมุมตรงกันข้าม

หากเราตั้งค่า 2 เป็นความยาวที่เล็กที่สุดผลรวมของด้านจะเป็นค่าสูงสุด

การใช้กฎไซน์

# a / (sin (A)) = b / (sin (B)) = c / (sin (C)) #

# => a / (sin (pi / 8)) = b / (sin (13/24 pi)) = c / (sin (pi / 3)) #

การจัดอันดับเหล่านี้ด้วยค่าไซน์ที่เล็กที่สุดทางด้านซ้าย

# => a / (sin (pi / 8)) = c / (sin (pi / 3)) = b / (sin (13/24 pi)) #

ดังนั้นข้าง # A # สั้นที่สุด

ตั้งค่า A = # 2 #

# => c = (2sin (pi / 3)) / (sin (pi / 8)) "" = "" 4.526 # ทศนิยม 3 ตำแหน่ง

# => b = (2sin (13/24 pi)) / (sin (pi / 8)) = 5.182 # ทศนิยม 3 ตำแหน่ง

ดังนั้นขอบเขตสูงสุดคือ: #11.708# ทศนิยม 3 ตำแหน่ง