ตอบ:
คำอธิบาย:
ให้พื้นที่ของสามเหลี่ยมเป็น A1 & A2 และข้าง a1 & a2
เงื่อนไขสำหรับด้านที่สามของสามเหลี่ยม: ผลรวมของทั้งสองด้านต้องมากกว่าด้านที่สาม
ในกรณีของเราทั้งสองด้านนั้นคือ 6, 4
ด้านที่สามควรเป็น น้อยกว่า 10 และมากกว่า 2.
ดังนั้นด้านที่สามจะมีค่าสูงสุด 9.9 และค่าต่ำสุด 2.1. (แก้ไขไม่เกินหนึ่งจุดทศนิยม)
พื้นที่จะเป็นสัดส่วนกับ (ด้าน) ^ 2
กรณี: พื้นที่ขั้นต่ำ:
เมื่อด้าน 9 ของสามเหลี่ยมที่คล้ายกันตรงกับ 9.9 เราจะได้พื้นที่ขั้นต่ำของสามเหลี่ยม
กรณี: พื้นที่สูงสุด:
เมื่อด้านที่ 9 ของสามเหลี่ยมคล้ายกันตรงกับ 2.1 เราจะได้พื้นที่สูงสุดของสามเหลี่ยม
สามเหลี่ยม A มีพื้นที่ 12 และสองด้านยาว 5 และ 7 สามเหลี่ยม B นั้นคล้ายกับสามเหลี่ยม A และมีด้านที่มีความยาว 19 พื้นที่สามเหลี่ยมขั้นสูงสุดและต่ำสุดที่เป็นไปได้คืออะไร?
พื้นที่สูงสุด = 187.947 "" หน่วยตารางพื้นที่ขั้นต่ำ = 88.4082 "" หน่วยตาราง "รูปสามเหลี่ยม A และ B มีความคล้ายคลึงกัน ด้วยวิธีอัตราส่วนและสัดส่วนของการแก้ปัญหาสามเหลี่ยม B มีสามเหลี่ยมสามรูปแบบที่เป็นไปได้ สำหรับสามเหลี่ยม A: ด้านคือ x = 7, y = 5, z = 4.800941906394, มุม Z = 43.29180759327 ^ @ มุม Z ระหว่างด้าน x และ y ได้รับโดยใช้สูตรสำหรับพื้นที่สามเหลี่ยมพื้นที่ = 1/2 * x * y * sin Z 12 = 1/2 * 7 * 5 * sin ZZ = 43.29180759327 ^ @ สามเหลี่ยมสามรูปสามเหลี่ยมที่เป็นไปได้สำหรับสามเหลี่ยม B: ด้านเป็นสามเหลี่ยม 1 x_1 = 19, y_1 = 95/7, z_1 = 13.031128031641, มุม Z_1 = 43.29180759327 ^ @ รูปสามเหลี่ยม 2
สามเหลี่ยม A มีพื้นที่ 12 และสองด้านยาว 6 และ 9 สามเหลี่ยม B นั้นคล้ายกับสามเหลี่ยม A และมีด้านที่มีความยาว 15 พื้นที่สามเหลี่ยมขั้นสูงสุดและต่ำสุดที่เป็นไปได้คืออะไร?
Delta s A และ B มีความคล้ายคลึงกัน ในการรับพื้นที่สูงสุดของ Delta B ด้าน 15 ของ Delta B ควรตรงกับด้านที่ 6 ของ Delta A. Sides อยู่ในอัตราส่วน 15: 6 ดังนั้นพื้นที่จะอยู่ในอัตราส่วน 15 ^ 2: 6 ^ 2 = 225: 36 พื้นที่สูงสุดของสามเหลี่ยม B = (12 * 225) / 36 = 75 ในทำนองเดียวกันเพื่อให้ได้พื้นที่ต่ำสุดด้านที่ 9 ของ Delta A จะตรงกับด้านที่ 15 ของ Delta B. Sides อยู่ในอัตราส่วน 15: 9 และพื้นที่ 225: 81 พื้นที่ขั้นต่ำของ Delta B = (12 * 225) / 81 = 33.3333
สามเหลี่ยม A มีพื้นที่ 12 และสองด้านยาว 7 และ 7 สามเหลี่ยม B นั้นคล้ายกับสามเหลี่ยม A และมีด้านที่มีความยาว 19 พื้นที่สามเหลี่ยมขั้นสูงสุดและต่ำสุดที่เป็นไปได้คืออะไร?
พื้นที่ของสามเหลี่ยม B = 88.4082 เนื่องจากสามเหลี่ยม A คือหน้าจั่วสามเหลี่ยม B ก็จะเป็นหน้าจั่วด้านของสามเหลี่ยม B & A อยู่ในอัตราส่วน 19: 7 พื้นที่จะอยู่ในอัตราส่วน 19 ^ 2: 7 ^ 2 = 361: 49: พื้นที่ของสามเหลี่ยม B = (12 * 361) / 49 = 88.4082