ตอบ:
จากเส้นรอบวงคุณสามารถกำหนดรัศมี เมื่อคุณมีรัศมีแล้วคุณจะคำนวณพื้นที่เป็น
คำตอบจะเป็น
คำอธิบาย:
หากเส้นรอบวงคือ 50.24 รัศมีจะต้องเป็น
ดังนั้น,
เนื่องจากพื้นที่นั้น
เส้นทแยงมุมของสี่เหลี่ยมผืนผ้ามีขนาด 13 เซนติเมตร ด้านหนึ่งยาว 12 เซนติเมตร คุณจะหาความยาวของด้านอื่น ๆ ได้อย่างไร?
ความยาวคือ 5 ซม. สมมุติว่าด้าน 12 เซนติเมตรเป็นแนวนอน ดังนั้นเราต้องหาความยาวของแนวตั้งที่เราเรียกว่า x ขอให้สังเกตว่าด้านแนวนอนแนวตั้งและแนวทแยงเป็นรูปสามเหลี่ยมมุมฉากโดยที่ catheti เป็นด้านของสี่เหลี่ยมผืนผ้าและด้านตรงข้ามมุมฉากคือเส้นทแยงมุม ดังนั้นการใช้ทฤษฏีของ Pythagora เราจึงได้ 13 ^ 2 = 12 ^ 2 + x ^ 2 ซึ่งเราได้ x = sqrt (13 ^ 2-12 ^ 2) = sqrt (169-144) = sqrt (25) = 5
ความยาวของกล่องน้อยกว่าความสูง 2 เซนติเมตร ความกว้างของกล่องมากกว่า 7 เซนติเมตร ถ้ากล่องมีปริมาตร 180 ลูกบาศก์เซนติเมตรพื้นที่ผิวของมันคืออะไร?
ให้ความสูงของกล่องเป็น h cm จากนั้นความยาวจะเป็น (h-2) cm และความกว้างจะเป็น (h + 7) cm ดังนั้นโดยการวางปัญหา (h-2) xx (h + 7) xxh = 180 => (h ^ 2-2h) xx (h + 7) = 180 => h ^ 3-2h ^ 2 + 7h ^ 2-14h-180 = 0 => h ^ 3 + 5h ^ 2-14h- 180 = 0 สำหรับ h = 5 LHS กลายเป็นศูนย์ดังนั้น (h-5) คือปัจจัยของ LHS ดังนั้น h ^ 3-5h ^ 2 + 10h ^ 2-50h + 36h-180 = 0 => h ^ 2 (h-5) + 10h (h-5) +36 (h-5) = 0 => (h-5) (h ^ 2 + 10h + 36) = 0 ดังนั้นความสูง h = 5 ซม. ตอนนี้ความยาว = (5-2) = 3 cm Width = 5 + 7 = 12 cm ดังนั้นพื้นที่ผิวกลายเป็น 2 (3xx12 + 12xx5 + 3xx5) = 222cm ^ 2
ขาข้างหนึ่งของสามเหลี่ยมมุมฉากยาว 3.2 เซนติเมตร ความยาวของขาที่สองคือ 5.7 เซนติเมตร ความยาวของด้านตรงข้ามมุมฉากคืออะไร?
ด้านตรงข้ามมุมฉากของสามเหลี่ยมมุมฉากยาว 6.54 (2dp) ซม. ให้เลกแรกของสามเหลี่ยม righr เป็น l_1 = 3.2 ซม. ขาที่สองของสามเหลี่ยม righr เป็น l_2 = 5.7 ซม. ด้านตรงข้ามมุมฉากของสามเหลี่ยมมุมฉากคือ h = sqrt (l_1 ^ 2 + l_2 ^ 2) = sqrt (3.2 ^ 2 + 5.7 ^ 2) = sqrt42.73 = 6.54 (2dp) ซม. [ตอบ]