ตอบ:
ความกว้าง:
คำอธิบาย:
ให้ความกว้างเท่ากับ
เราได้รับการบอกเล่า
และ
ตั้งแต่
ดังนั้น
ดังนั้น
และ
ตั้งแต่
เส้นทแยงมุมของสี่เหลี่ยมผืนผ้ามีขนาด 13 เซนติเมตร ด้านหนึ่งยาว 12 เซนติเมตร คุณจะหาความยาวของด้านอื่น ๆ ได้อย่างไร?
ความยาวคือ 5 ซม. สมมุติว่าด้าน 12 เซนติเมตรเป็นแนวนอน ดังนั้นเราต้องหาความยาวของแนวตั้งที่เราเรียกว่า x ขอให้สังเกตว่าด้านแนวนอนแนวตั้งและแนวทแยงเป็นรูปสามเหลี่ยมมุมฉากโดยที่ catheti เป็นด้านของสี่เหลี่ยมผืนผ้าและด้านตรงข้ามมุมฉากคือเส้นทแยงมุม ดังนั้นการใช้ทฤษฏีของ Pythagora เราจึงได้ 13 ^ 2 = 12 ^ 2 + x ^ 2 ซึ่งเราได้ x = sqrt (13 ^ 2-12 ^ 2) = sqrt (169-144) = sqrt (25) = 5
ความยาวของกล่องน้อยกว่าความสูง 2 เซนติเมตร ความกว้างของกล่องมากกว่า 7 เซนติเมตร ถ้ากล่องมีปริมาตร 180 ลูกบาศก์เซนติเมตรพื้นที่ผิวของมันคืออะไร?
ให้ความสูงของกล่องเป็น h cm จากนั้นความยาวจะเป็น (h-2) cm และความกว้างจะเป็น (h + 7) cm ดังนั้นโดยการวางปัญหา (h-2) xx (h + 7) xxh = 180 => (h ^ 2-2h) xx (h + 7) = 180 => h ^ 3-2h ^ 2 + 7h ^ 2-14h-180 = 0 => h ^ 3 + 5h ^ 2-14h- 180 = 0 สำหรับ h = 5 LHS กลายเป็นศูนย์ดังนั้น (h-5) คือปัจจัยของ LHS ดังนั้น h ^ 3-5h ^ 2 + 10h ^ 2-50h + 36h-180 = 0 => h ^ 2 (h-5) + 10h (h-5) +36 (h-5) = 0 => (h-5) (h ^ 2 + 10h + 36) = 0 ดังนั้นความสูง h = 5 ซม. ตอนนี้ความยาว = (5-2) = 3 cm Width = 5 + 7 = 12 cm ดังนั้นพื้นที่ผิวกลายเป็น 2 (3xx12 + 12xx5 + 3xx5) = 222cm ^ 2
ความยาวของสี่เหลี่ยมผืนผ้าน้อยกว่าความกว้าง 3 เซนติเมตร สี่เหลี่ยมผืนผ้ามีขนาดเท่าใดหากพื้นที่ของมันเป็น 54 ตารางเซนติเมตร?
ความกว้าง = 9 ซม. ความยาว = 6 ซม. ปล่อยให้ x เป็นความกว้างจากนั้นความยาวคือ x-3 ให้พื้นที่เป็น E จากนั้นเรามี: E = x * (x-3) 54 = x ^ 2-3x x ^ 2-3x-54 = 0 จากนั้นเราทำการเลือกปฏิบัติของสมการ: D = 9 + 216 D = 225 X_1 = (3 + 15) / 2 = 9 X_2 = (3-15) / 2 = -6 ซึ่งถูกปฏิเสธเนื่องจากเราไม่สามารถ มีความกว้างและความยาวเป็นลบ ดังนั้น x = 9 ดังนั้น width = x = 9cm และ length = x-3 = 9-3 = 6cm