ตอบ:
คำอธิบาย:
เพียงเพื่ออธิบาย
ถ้าคุณต้องการที่จะหา
ตอนนี้เพราะเรากำลังเผชิญกับรูปแบบของ
ความแตกต่างอยู่เสมอในรูปแบบของ
ตอนนี้เราพูด (โดยทั่วไป):
อย่างที่เราเห็น x_max หรือ x_min อยู่เสมอ
ตอบ:
คำอธิบาย:
# "วิธีหนึ่งที่เป็นไปได้" #
# c = -3larrcolor (สีแดง) "ตัดแกน y" #
# • "ผลรวมของราก" = -b / a #
# • "ผลิตภัณฑ์จากราก" = ca #
# "ที่นี่รากคือ" x = -3 "และ" x = 1 #
# "นั่นคือที่ที่กราฟข้ามแกน x" #
# rArr-3xx1 = = carArrca -3rArra = -3 / (- 3) = 1 #
# rArr-/ b = -3 + 1 = -2rArrb = 2 #
# rArry = x ^ 2 + 2x-3 # กราฟ {x ^ 2 + 2x-3 -10, 10, -5, 5}
ตอบ:
Bit wordy แต่คุณทำงานผ่านมัน ให้คำอธิบายแบบเต็ม
คำอธิบาย:
รับแบบฟอร์มมาตรฐาน
เส้นโค้งที่ด้านล่างมีชื่อพิเศษ (สิ่งที่ไม่ได้อยู่ในคณิตศาสตร์) ของ Vertex
หากมีจุดตัดแกน x (ที่กราฟตัดแกน x) จากนั้นค่าจุดยอดของ
ดูกราฟที่จุดตัด x อยู่ที่
ดังนั้น
นี่คือสิ่งที่เกี่ยวข้อง
เขียนเป็น
หารทั้งสองข้างด้วย
ทดแทนเข้ามา
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ให้เลือกจุดที่รู้จัก
ฉันเลือก x-intercepter ด้านซ้าย
รู้จักกันในนามว่า
เปลี่ยนตัวเข้ามา
เพิ่ม 3 ทั้งสองข้างและทำให้วงเล็บง่ายขึ้น
ดังนั้น
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
โปรดทราบว่า:
เป็นจุดเริ่มต้นของการทำตารางให้เสร็จสมบูรณ์
'L แปรเปลี่ยนร่วมกันเป็น a และรากที่สองของ b และ L = 72 เมื่อ a = 8 และ b = 9. ค้นหา L เมื่อ a = 1/2 และ b = 36? Y แปรเปลี่ยนร่วมกันเป็นลูกบาศก์ของ x และรากที่สองของ w และ Y = 128 เมื่อ x = 2 และ w = 16 ค้นหา Y เมื่อ x = 1/2 และ w = 64?
L = 9 "และ" y = 4> "คำสั่งเริ่มต้นคือ" Lpropasqrtb "เพื่อแปลงเป็นสมการคูณด้วย k ค่าคงที่" "ของรูปแบบ" rArrL = kasqrtb "เพื่อหา k ใช้เงื่อนไขที่กำหนด" L = 72 " "a = 8" และ "b = 9 L = kasqrtbrArrk = L / (asqrtb) = 72 / (8xxsqrt9) = 72/24 = 3" สมการคือ "สี (แดง) (แถบ (ul (| สี (สีขาว)) 2/2) สี (ดำ) (L = 3asqrtb) สี (ขาว) (2/2) |))) "เมื่อ" a = 1/2 "และ" b = 36 "L = 3xx1 / 2xxsqrt36 = 3xx1 / 2xx6 = 9 สี (สีน้ำเงิน) "------------------------------------------- ------------ "" ในทำนองเดียวกัน "y = kx ^
รูปสามเหลี่ยมมีด้าน A, B และ C ด้าน A และ B มีความยาว 10 และ 8 ตามลำดับ มุมระหว่าง A และ C คือ (13pi) / 24 และมุมระหว่าง B และ C คือ (pi) 24 พื้นที่ของสามเหลี่ยมคืออะไร?
เนื่องจากมุมสามเหลี่ยมเพิ่มใน pi เราสามารถหามุมระหว่างด้านที่กำหนดและสูตรพื้นที่ให้ A = frac 1 2 a b sin C = 10 (sqrt {2} + sqrt {6}) มันจะช่วยถ้าเรายึดหลักการของตัวอักษรตัวเล็ก a, b, c และอักษรตัวใหญ่ตรงข้ามจุด A, B, C มาทำกันที่นี่ พื้นที่ของรูปสามเหลี่ยมคือ A = 1/2 a b sin C โดยที่ C คือมุมระหว่าง a และ b เรามี B = frac {13 pi} {24} และ (คาดเดาว่าเป็นคำสะกดผิดในคำถาม) A = pi / 24 เนื่องจากมุมสามเหลี่ยมเพิ่มขึ้นถึง 180 ^ circ aka pi เราได้ C = pi - pi / 24 - frac {13 pi} {24} = frac {10 pi} {24} = frac {5pi} { 12} frac {5pi} {12} คือ 75 ^ circ เราได้ไซน์ด้วยสูตรมุมรวม: sin 75 ^ circ = sin (30 +45) = sin 30 cos 45 + cos 3
รูปสามเหลี่ยมมีด้าน A, B และ C ด้าน A และ B มีความยาว 3 และ 5 ตามลำดับ มุมระหว่าง A และ C คือ (13pi) / 24 และมุมระหว่าง B และ C คือ (7pi) / 24 พื้นที่ของสามเหลี่ยมคืออะไร?
โดยการใช้กฎ 3 ข้อ: ผลรวมของมุมกฎของโคไซน์สูตรของเฮรอนพื้นที่คือ 3.75 กฎของโคไซน์สำหรับด้าน C ระบุ: C ^ 2 = A ^ 2 + B ^ 2-2 * A * B * cos (c) หรือ C = sqrt (A ^ 2 + B ^ 2-2 * A * B * cos (c)) โดยที่ 'c' คือมุมระหว่างด้าน A และ B ซึ่งสามารถพบได้โดยรู้ว่าผลรวมขององศาทั้งหมด เท่ากับ 180 หรือในกรณีนี้การพูดใน rads ads: a + b + c = π c = π-bc = π-13 / 24π-7 / 24π = 24 / 24π-13 / 24π-7 / 24π = (24-13-7) / 24π = 4 / 24π = π / 6 c = π / 6 เมื่อทราบมุม c แล้วด้าน C สามารถคำนวณได้: C = sqrt (3 ^ 2 + 5 ^ 2-2 * 3 * 5 * cos (π / 6)) = sqrt (9 + 25-30 * sqrt (3) / 2) = 8.019 C = 2.8318 สูตรของนกกระสาคำนวณพื้นที่ของสามเหลี่ยมใด ๆ