ตอบ:
ในรูปแบบทั่วไป:
# 2x + y-18 = 0 #
คำอธิบาย:
ความลาดชัน
#m = (Delta y) / (Delta x) = (y_2-y_1) / (x_2-x_1) #
ปล่อย
แล้ว:
#m = (8-2) / (5-8) = 6 / (- 3) = -2 #
สมการของเส้นผ่าน
#y - y_1 = m (x-x_1) #
นั่นคือ:
#y - 2 = -2 (x - 8) #
เพิ่ม
#y = -2x + 18 #
ซึ่งเป็นรูปแบบการตัดความชันของสมการของเส้นตรง
จากนั้นให้ใส่คำทั้งหมดไว้ด้านเดียวโดยเพิ่ม
# 2x + y-18 = 0 #
ซึ่งเป็นรูปแบบทั่วไปของสมการของเส้นตรง
สมการของเส้นที่ผ่าน W (2, -3) และขนานกับเส้น y = 3x +5 คืออะไร
"y = 3x - 9 ที่ได้รับ: W (2, -3) และบรรทัด y = 3x + 5 เส้นขนานมีความชันเท่ากันค้นหาความชันของบรรทัดที่กำหนดเส้นหนึ่งในรูปของ y = mx + b ความชันจากเส้นที่กำหนด m = 3 วิธีหนึ่งในการหาเส้นขนานผ่าน (2, -3) คือการใช้รูปแบบความชันจุดของเส้น "" y - y_1 = m (x - x_1): y - -3 = 3 (x - 2) y + 3 = 3x - 6 ลบ 3 จากทั้งสองข้าง: "" y = 3x - 6 - 3 ลดความซับซ้อน: "" y = 3x - 9 วิธีที่สองคือการใช้ y = mx + b และใช้จุด (2, -3) เพื่อค้นหาจุดตัดแกน y (0, b): -3 = 3 (2) + b -3 = 6 + b -3 -6 = bb = -9 y = 3x - 9
สมการของเส้นที่ผ่าน (2,2) และ (3,6) คืออะไร?
Y = 4x-6 ขั้นตอนที่ 1: คุณมีสองคะแนนในคำถามของคุณ: (2,2) และ (3,6) สิ่งที่คุณต้องทำคือใช้สูตรความชัน สูตรความชันคือ "slope" = m = (y_2-y_1) / (x_2-x_1) ขั้นตอนที่ 2: งั้นลองดูจุดแรกของคำถาม (2,2) คือ (x_1, y_1 นั่นหมายความว่า 2 = x_1 และ 2 = y_1 ตอนนี้ลองทำสิ่งเดียวกันกับจุดที่สอง (3,6) ที่นี่ 3 = x_2 และ 6 = y_2 : ลองเอาตัวเลขเหล่านั้นมาใส่ในสมการของเราเราจึงมี m = (6-2) / (3-2) = 4/1 ที่ให้คำตอบของเรา 4! และความชันนั้นแทนด้วยตัวอักษร m ขั้นตอนที่ 4: ทีนี้ลองใช้สมการสูตรเส้นของเราสมการความชัน - จุดตัดของเส้นคือ y = mx + b ขั้นตอนที่ 5: เสียบจุดใดจุดหนึ่ง: (2,2) หรือ (3,6) ลงใน y = mx + b ดังนั้นคุณมี 6 = m3 + b
สมการของเส้นที่ผ่าน (3, -4) ด้วย m = 6 คืออะไร?
Y = 6x -22> หนึ่งในรูปแบบของสมการของเส้นคือ y = mx + c โดยที่ m แทนการไล่ระดับสีและ c, y-intercept เราเขียนได้: y = 6x + c, เนื่องจาก m = 6 และหา c, ใช้ (3, -4) x = 3, y = -4: 6 (3) + c = -4 c = -22 ดังนั้นสมการ คือ: y = 6x - 22