สมการของเส้นผ่าน (-9,10) และ (-12,3) คืออะไร?

สมการของเส้นผ่าน (-9,10) และ (-12,3) คืออะไร?
Anonim

ตอบ:

เราจะต้องใช้จุดทีสุดในบรรทัดที่แสดงโดย (x, y)

คำอธิบาย:

ดังนั้นตอนนี้บรรทัดมีสามคะแนน: #(-9,10)#, #(-12,3)#และ # (x, y) #

ให้คะแนนเหล่านี้แทนโดย A, B และ C ตามลำดับ

ตอนนี้เนื่องจาก AB และ BC เป็นส่วนของเส้นตรงที่วางอยู่บนเส้นเดียวกันจึงเห็นได้ชัดว่ามีความชันเท่ากัน ดังนั้นเราสามารถคำนวณความชันของ AB และ BC แยกกันและหาค่าความชันเพื่อหาสมการที่เราต้องการ

Slope (AB) = # m1 = (3-10) / (- 12 - (- 9)) #

=> # m1 = 3/7 #

ความลาดชัน (BC) =# m2 = (y-3) / (x - (- 12)) #

=> # m2 = (y-3) / (x + 12) #

ตอนนี้

# m1 = m2 #

=> # 7/3 = (y-3) / (x + 12) #

=> # 7 (x + 12) = 3 (y-3) #

=># 7x + 84 = 3y-9 #

=># 7x-3y + 84 - (- 9) = 0 #

=># 7x-3y + 93 = 0 #

สมการที่เราต้องการคือ !!