สมการของเส้นที่ผ่านจุด (2, 4) และ (4,0) คืออะไร?

สมการของเส้นที่ผ่านจุด (2, 4) และ (4,0) คืออะไร?
Anonim

ตอบ:

# การ y = -2x + 8 #

คำอธิบาย:

สมการของเส้นตรง #color (สีน้ำเงิน) "รูปแบบลาดชัน" คือ.

#COLOR (สีแดง) (บาร์ (UL (| สี (สีขาว) (2/2) สี (สีดำ) (y = mx + ข) สี (สีขาว) (2/2) |))) #

โดยที่ m แทนความชันและ b, จุดตัดแกน y

เราต้องการหา m และ b เพื่อสร้างสมการ

ในการค้นหา m ให้ใช้ #color (สีน้ำเงิน) "สูตรไล่ระดับสี" #

#COLOR (สีแดง) (บาร์ (UL (| สี (สีขาว) (2/2) สี (สีดำ) (m = (y_2-y_1) / (x_2-x_1)) สี (สีขาว) (2/2) |))) #

ที่ไหน # (x-1, y_1) "และ" (x_2, y_2) "เป็นจุดประสานงาน 2 จุด" #

2 คะแนนที่นี่คือ (2, 4) และ (4, 0)

ปล่อย # (x_1, y_1) = (2,4) "และ" (x_2, y_2) = (4,0) #

# rArrm = (0-4) / (4-2) = (- 4) / 2 = -2 #

เราสามารถเขียน สมการบางส่วน เช่น # การ y = -2x + B #

หากต้องการหา b ให้แทนที่ทั้ง 2 จุดลงใน สมการบางส่วน และแก้หาข

ใช้ (4, 0) นั่นคือ x = 4 และ y = 0

# rArr0 = (- 2xx4) + brArr0 = -8 + brArrb = 8 #

# rArry = -2x + 8 "คือสมการ" #

ตอบ:

# 2x + Y = 8 #

คำอธิบาย:

หากทราบพิกัดสองค่าจะมีสูตรอื่นที่ตรงกว่า;

# (y-y_1) / (y_2-y_1) = (x-x_1) / (x_2-x_1) #

# (x_1, y_1) = (2,4) #

# (x_2, y_2) = (4,0) #

# (y-4) / (0-4) = (x-2) / (4-2 #

# Y / -4 = (x-4) / 2 #

# 2y = -4x + 8 #

# 4x + 2y = 16 #

# 2x + Y = 8 #