คุณจะทำให้ f (theta) = csc2theta-sec2theta-3tan2theta เป็นฟังก์ชันตรีโกณมิติของหน่วย theta ได้อย่างไร

คุณจะทำให้ f (theta) = csc2theta-sec2theta-3tan2theta เป็นฟังก์ชันตรีโกณมิติของหน่วย theta ได้อย่างไร
Anonim

ตอบ:

# f (theta) = (cos ^ 2theta บาป ^ 2theta-2costhetasintheta-4sin ^ ^ 2thetacos 2theta) / (2sinthetacos ^ 3theta บาป ^ 3thetacostheta) #

คำอธิบาย:

ก่อนเขียนซ้ำเป็น:# f (theta) = 1 / บาป (2theta) -1 / cos (2theta) -sin (2theta) / cos (2theta) #

จากนั้นเป็น:

# f (theta) = 1 / บาป (2theta) - (1-sin (2theta)) / cos (2theta) = (cos (2theta) -sin (2theta) -sin ^ 2 (2theta)) / (บาป (2theta) cos (2theta)) #

เราจะใช้:

#cos (A + B) = cosAcosB-sinAsinB #

#sin (A + B) = sinAcosB + cosAsinB #

ดังนั้นเราจะได้รับ:

# f (theta) = (cos ^ 2theta บาป ^ 2theta-2costhetasintheta-4sin ^ ^ 2thetacos 2theta) / ((2sinthetacostheta) (cos ^ 2theta บาป ^ 2theta)) #

# f (theta) = (cos ^ 2theta บาป ^ 2theta-2costhetasintheta-4sin ^ ^ 2thetacos 2theta) / (2sinthetacos ^ 3theta บาป ^ 3thetacostheta) #