ตอบ:
คำอธิบาย:
ใช้กราฟโคไซน์
ตอบ:
คำอธิบาย:
วงกลมหน่วย Trig ->
cos x = 0 -> ส่วนโค้ง
สำหรับรอบระยะเวลา (0, 2pi) คำตอบคือ:
บันทึก. The arc -
'L แปรเปลี่ยนร่วมกันเป็น a และรากที่สองของ b และ L = 72 เมื่อ a = 8 และ b = 9. ค้นหา L เมื่อ a = 1/2 และ b = 36? Y แปรเปลี่ยนร่วมกันเป็นลูกบาศก์ของ x และรากที่สองของ w และ Y = 128 เมื่อ x = 2 และ w = 16 ค้นหา Y เมื่อ x = 1/2 และ w = 64?
L = 9 "และ" y = 4> "คำสั่งเริ่มต้นคือ" Lpropasqrtb "เพื่อแปลงเป็นสมการคูณด้วย k ค่าคงที่" "ของรูปแบบ" rArrL = kasqrtb "เพื่อหา k ใช้เงื่อนไขที่กำหนด" L = 72 " "a = 8" และ "b = 9 L = kasqrtbrArrk = L / (asqrtb) = 72 / (8xxsqrt9) = 72/24 = 3" สมการคือ "สี (แดง) (แถบ (ul (| สี (สีขาว)) 2/2) สี (ดำ) (L = 3asqrtb) สี (ขาว) (2/2) |))) "เมื่อ" a = 1/2 "และ" b = 36 "L = 3xx1 / 2xxsqrt36 = 3xx1 / 2xx6 = 9 สี (สีน้ำเงิน) "------------------------------------------- ------------ "" ในทำนองเดียวกัน "y = kx ^
พิสูจน์แล้ว: sqrt ((1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx)) = 2 / abs (sinx)?
พิสูจน์ด้านล่างโดยใช้คอนจูเกตและตรีโกณมิติของทฤษฎีบทพีทาโกรัส ส่วนที่ 1 sqrt ((1-cosx) / (1 + cosx)) (สีขาว) ("XXX") = sqrt (1-cosx) / sqrt (1 + cosx) สี (สีขาว) ("XXX") = sqrt ((1-cosx)) / sqrt (1 + cosx) * sqrt (1-cosx) / sqrt (1-cosx) (สีขาว) ("XXX") = (1-cosx) / sqrt (1-cos ^ 2x) ส่วนที่ 2 ในทำนองเดียวกัน sqrt ((1 + cosx) / (1-cosx) สี (ขาว) ("XXX") = (1 + cosx) / sqrt (1-cos ^ 2x) ส่วนที่ 3: การรวมคำ sqrt ( (1-cosx) / (1 + cosx)) + sqrt ((1 + cosx) / (1-cosx) (สีขาว) ("XXX") = (1-cosx) / sqrt (1-cos ^ 2x) + (1 + cosx) / sqrt (1-cos ^ 2x) สี (ขาว) ("XXX") = 2
Y เป็นสัดส่วนโดยตรงกับ x และ y = 216 เมื่อ x = 2 ค้นหา y เมื่อ x = 7? ค้นหา x เมื่อ y = 540?
อ่านด้านล่าง ... หากบางสิ่งบางอย่างเป็นสัดส่วนเราใช้เสาตามที่คุณระบุไว้ว่าเป็นสัดส่วนโดยตรงแสดงว่า y = kx โดยที่ k คือค่าที่จะทำงาน การเสียบค่าที่กำหนด: 216 = k xx2 ดังนั้น k = 216/2 = 108 สิ่งนี้สามารถเขียนเป็น: y = 108 xx x ดังนั้นเพื่อตอบคำถามแรกโดยเสียบค่า: y = 108 xx 7 = 756 คำถามที่สอง: 540 = 108 xx x ดังนั้น x = 540/180 = 3