เวกเตอร์หน่วยคืออะไรมุมฉากของระนาบที่ประกอบด้วย (-i + j + k) และ (i -2j + 3k)?

เวกเตอร์หน่วยคืออะไรมุมฉากของระนาบที่ประกอบด้วย (-i + j + k) และ (i -2j + 3k)?
Anonim

ตอบ:

เวกเตอร์หน่วยคือ # = <5 / sqrt42,4 / sqrt42,1 / sqrt42> #

คำอธิบาย:

เราคำนวณเวกเตอร์ที่ตั้งฉากกับเวกเตอร์อีก 2 ตัวโดยทำครอสโปรดัค

ปล่อย #veca = <- 1,1,1> #

# vecb = <1 -2,3> #

# vecc = | (Hati, hatj, hatk), (- 1,1,1), (1, -2,3) | #

# = Hati | (1,1), (- 2,3) | -hatj | (-1,1), (1,3) | + hatk | (-1,1), (1, -2) | #

# = Hati (5) -hatj (-4) + hatk (1) #

#=<5,4,1>#

การตรวจสอบ

# veca.vecc = <- 1,1,1> <5,4,1> = -. 5 + 4 + 1 = 0 #

# vecb.vecc = <1 -2,3>. <5,4,1> = 5-8 + 3 = 0 #

ค่าโมดูลัสของ # vecc = || vecc || = || <5,4,1> || = sqrt (25 + 16 + 1) = sqrt42 #

เวกเตอร์หน่วย # = vecc / (|| vecc ||) #

# = 1 / sqrt42 <5,4,1> #