มุมระหว่าง <-3,9, -7> และ <4, -2,8> คืออะไร?

มุมระหว่าง <-3,9, -7> และ <4, -2,8> คืออะไร?
Anonim

ตอบ:

# theta ~ = 2.49 # เรเดียน

คำอธิบาย:

หมายเหตุ: มะลักระหว่างเวกเตอร์ที่ไม่ใช่ศูนย์สองตัว ยู และ โวลต์ที่ไหน # 0 <= theta <= pi # ถูกกำหนดเป็น

#vec u = <u_1, u_2, u_3> #

#vec v = <v_1, v_2, v_3> #

#cos theta = (u * v) / (|| u || "|| v || #

ที่ไหน: # "" u * v = (u_1v_1) + (u_2v_2) + (u_3v_3) #

# || || ยู = sqrt ((u_1) ^ 2 + (u_2) ^ 2 + (u_3) ^ 2) #

# || v || = sqrt ((v_1) ^ 2 + (v_2) ^ 2 + (v_3) ^ 2) #

ขั้นตอนที่ 1: ปล่อย

#vec u = <-3, 9, -7> # และ

#vec v = <4, -2, 8> #

ขั้นตอนที่ 2: มาหากัน #color (แดง) (u * v) #

#color (แดง) (u * v) = (-3) (4) + (9) (- 2) + (-7) (8) #

#= -12 -18 -56#

# = color (สีแดง) (- 86) #

ขั้นตอนที่ 3: ให้หา #COLOR (สีฟ้า) (|| || U) #

#vec u = <-3, 9 - 7> #

#color (สีน้ำเงิน) (|| u ||) = sqrt ((- 3) ^ 2 + (9) ^ 2 + (-7) ^ 2) #

# = sqrt (9 + 81 + 49) #

# = สี (สีฟ้า) (sqrt139) #

ขั้นตอนที่ 4 มาหากัน #COLOR (สีม่วง) (|| || โวลต์) #

#vec v = <4, -2, 8> #

#color (สีม่วง) (|| v ||) = sqrt ((4) ^ 2 + (-2) ^ 2 + (8) ^ 2) #

# = sqrt (16 + 4 + 64) = color (สีม่วง) (sqrt84) #

ขั้นตอนที่ 5; ปล่อยให้มันกลับไปเป็นสูตรที่ให้ไว้ข้างต้นแล้วค้นหา # theta #

#cos theta = (u * v) / (|| u || "|| v ||) #

#cos theta = color (สีแดง) (- 86) / ((color (blue) sqrt (139)) color (สีม่วง) ((sqrt84)) #

#cos theta = color (สีแดง) (- 86) / (sqrt11676) #

# theta = cos ^ (- 1) (- 86 / (sqrt11676)) #

# theta ~ = 2.49 # เรเดียน

** หมายเหตุ: นี่เป็นเพราะ #u * v <0 #