ตอบ:
ผลที่ได้คือ
คำอธิบาย:
ในการเพิ่มหรือลดตัวเลขสองตัวในสัญกรณ์วิทยาศาสตร์คุณต้องแสดงมันด้วยพลังเดียวกันของ
สมมติว่า 4 ^ (x_1) = 5, 5 ^ (x_2) = 6, 6 ^ (x_3) = 7, .... , 126 ^ (x_123) = 127, 127 ^ (x_124) = 128 อะไรคือ มูลค่าของผลิตภัณฑ์ x_1x_2 ... x_124?
3 1/2 4 ^ (x_1) = 5 การบันทึกทั้งสองด้านเราได้ x_1log4 = log5 หรือ x_1 = log5 / log4 5 ^ (x_2) = 6 การบันทึกทั้งสองด้านเราจะได้รับ x_2 log5 = log6 หรือ x_2 = log6 / log5 6 ^ (x_3) = 7 การบันทึกทั้งสองด้านเราได้ x_1log6 = log7 หรือ x_3 = log7 / log6 .................. 126 ^ (x_123) = 127 การบันทึกทั้งสองด้านเราจะได้รับ x_123 log126 = log127 หรือ x_123 = log127 / log126 127 ^ (x_124) = 128 การบันทึกทั้งสองด้านเราได้รับ x_124 log127 = log128 หรือ x_124 = log128 / log127 x_1 * x_2 * .... * x124 = (cancellog5 / log4) (cancellog6 / cancellog5) (cancellog7 / cancellog6) ... บันทึก (cancel127 / cancellog126) (log128 / cancellog127
อะไรคือ LCM (ทวีคูณทั่วไปอย่างน้อยที่สุด) ที่ 15,20 และ 25
ทวีคูณทั่วไปคือ 300, 600, 900, 1200, 1500 ..... แต่มีเพียงหนึ่งเดียวที่ต่ำที่สุดของพวกเขาทั้งหมด: 300 กลุ่มของตัวเลขสามารถมีหลายทวีคูณสามัญได้ เขียนแต่ละตัวเลขเป็นผลคูณของปัจจัยสำคัญ: "" 15 = สี (สีขาว) (wwww) 3xx5 "" 20 = 2xx2color (สีขาว) (w.) xx5 "" 25 = ul (สี (สีขาว) (wwwww.w ) 5xx5) LCM = 2xx2xx3xx5xx5 = 300 ตัวคูณ LOWEST จะต้องมีปัจจัยทั้งหมดของตัวเลข แต่ไม่มีการซ้ำซ้อน ทวีคูณทั่วไปคือ: 300, 600, 900, 1200, 1500 .... เป็นต้น อย่างไรก็ตาม 300 เป็นเพียงหนึ่งที่ต่ำที่สุด
ทวีคูณ: ( 4x + 3) (- 2x ^ 2 - 8x + 2)? A) 8x3 - 26x2 - 32x + 6 B) 8x3 + 38x2 + 32x + 6 C) 8x3 + 26x2 - 32x + 6 D) 8x3 - 38x2 + 16x + 6
8x ^ 3 + 26x ^ 2-32x + 6 (-4x + 3) (- 2x ^ 2-8x + 2) ก่อนอื่นคูณ -4x ด้วยทุกอย่างในพหุนามอื่น ๆ 8x ^ 3 + 32x ^ 2-8x จากนั้นคูณ 3 โดยทุกอย่างในพหุนามอื่น ๆ -6x ^ 2-24x + 6 จากนั้นรวม 8x ^ 3 + 32x ^ 2-6x ^ 2-8x-24x + 6 8x ^ 3 + 26x ^ 2-32x + 6