ตอบ:
คำอธิบาย:
# "วิธีหนึ่งคือใช้วิธีการของ" color (blue) "cross-multiplication" #
# • "ให้" a / b = c / drArrad = bc #
# (8pi ^ 2) / (G ^ 3M) = (T ^ 2) / (R ^ 3) #
# rArrG ^ 3MT ^ 2 = ^ 8pi 2r ^ 3 #
# "หารทั้งสองข้างด้วย" MT ^ 2 #
# (G ^ 3cancel (MT ^ 2)) / ยกเลิก (MT ^ 2) = (8pi ^ 2r ^ 3) / (MT ^ 2) #
# rArrG ^ 3 = (8pi ^ 2r ^ 3) / (MT ^ 2) #
#color (สีน้ำเงิน) "นำรูทของคิวบ์ทั้งสองข้าง" #
#root (3) (G ^ 3) = ราก (3) ((8pi ^ 2r ^ 3) / (MT ^ 2)) #
# rArrG = ราก (3) ((8pi ^ 2r ^ 3) / (MT ^ 2)) ถึง (T! = 0) #
'L แปรเปลี่ยนร่วมกันเป็น a และรากที่สองของ b และ L = 72 เมื่อ a = 8 และ b = 9. ค้นหา L เมื่อ a = 1/2 และ b = 36? Y แปรเปลี่ยนร่วมกันเป็นลูกบาศก์ของ x และรากที่สองของ w และ Y = 128 เมื่อ x = 2 และ w = 16 ค้นหา Y เมื่อ x = 1/2 และ w = 64?
L = 9 "และ" y = 4> "คำสั่งเริ่มต้นคือ" Lpropasqrtb "เพื่อแปลงเป็นสมการคูณด้วย k ค่าคงที่" "ของรูปแบบ" rArrL = kasqrtb "เพื่อหา k ใช้เงื่อนไขที่กำหนด" L = 72 " "a = 8" และ "b = 9 L = kasqrtbrArrk = L / (asqrtb) = 72 / (8xxsqrt9) = 72/24 = 3" สมการคือ "สี (แดง) (แถบ (ul (| สี (สีขาว)) 2/2) สี (ดำ) (L = 3asqrtb) สี (ขาว) (2/2) |))) "เมื่อ" a = 1/2 "และ" b = 36 "L = 3xx1 / 2xxsqrt36 = 3xx1 / 2xx6 = 9 สี (สีน้ำเงิน) "------------------------------------------- ------------ "" ในทำนองเดียวกัน "y = kx ^
รูปสามเหลี่ยมมีด้าน A, B และ C ด้าน A และ B มีความยาว 10 และ 8 ตามลำดับ มุมระหว่าง A และ C คือ (13pi) / 24 และมุมระหว่าง B และ C คือ (pi) 24 พื้นที่ของสามเหลี่ยมคืออะไร?
เนื่องจากมุมสามเหลี่ยมเพิ่มใน pi เราสามารถหามุมระหว่างด้านที่กำหนดและสูตรพื้นที่ให้ A = frac 1 2 a b sin C = 10 (sqrt {2} + sqrt {6}) มันจะช่วยถ้าเรายึดหลักการของตัวอักษรตัวเล็ก a, b, c และอักษรตัวใหญ่ตรงข้ามจุด A, B, C มาทำกันที่นี่ พื้นที่ของรูปสามเหลี่ยมคือ A = 1/2 a b sin C โดยที่ C คือมุมระหว่าง a และ b เรามี B = frac {13 pi} {24} และ (คาดเดาว่าเป็นคำสะกดผิดในคำถาม) A = pi / 24 เนื่องจากมุมสามเหลี่ยมเพิ่มขึ้นถึง 180 ^ circ aka pi เราได้ C = pi - pi / 24 - frac {13 pi} {24} = frac {10 pi} {24} = frac {5pi} { 12} frac {5pi} {12} คือ 75 ^ circ เราได้ไซน์ด้วยสูตรมุมรวม: sin 75 ^ circ = sin (30 +45) = sin 30 cos 45 + cos 3
จัดเรียงสมการต่อไปนี้ใหม่เพื่อให้ G เป็นตัวแบบโดยที่ r> 0 และ M> 0 8 pi ^ 2 / G ^ 3M = T ^ 2 / r ^ 3 ?
G = 2rroot3 ((mpi ^ 3) / T ^ 2 8 pi ^ 2 / G ^ 3M = T ^ 2 / r ^ 3 (8Mpi ^ 2) / G ^ 3 = T ^ 2 / r ^ 3 ข้ามทวีคูณ 8Mpi ^ 2r ^ 3 = T ^ 2G ^ 3 G ^ 3 = (8Mpi ^ 2r ^ 3) / T ^ 2 G = root3 ((8Mpi ^ 2r ^ 3) / T ^ 2 Cube รูทค่าที่สามารถรูทคิวบ์และวาง พวกมันนอกรูตคิวบ์เมื่อพวกเขาถูกรูทคิวบ์ G = 2rroot3 ((Mpi ^ 2) / T ^ 2