ตอบ:
ความลาดชันคือ
คำอธิบาย:
นี่คือการอ้างอิงถึงแทนเจนต์ที่มีพิกัดเชิงขั้ว
จากการอ้างอิงเราได้รับสมการต่อไปนี้:
เราจำเป็นต้องคำนวณ
ลองประเมินค่าข้างต้นที่
หาค่า r at
หมายเหตุ: ฉันทำตัวส่วนด้านบน
ที่
เราพร้อมที่จะเขียนสมการสำหรับความชัน m:
กองกำลังสามตัวทำหน้าที่ในจุด: 3 N ที่ 0 °, 4 N ที่ 90 °, และ 5 N ที่ 217 ° แรงสุทธิคืออะไร?
แรงที่เกิดขึ้นคือ "1.41 N" ที่ 315 ^ @ แรงสุทธิ (F_ "net") คือแรงที่เกิดขึ้น (F_ "R") แรงแต่ละอันสามารถแก้ไขได้ในองค์ประกอบ x และองค์ประกอบ y ค้นหาองค์ประกอบ x ของแรงแต่ละอันด้วยการคูณแรงด้วยโคไซน์ของมุม เพิ่มพวกเขาเพื่อรับองค์ประกอบ x ผลลัพธ์ Sigma (F_ "x") = ("3 N" * cos0 ^ @) + ("4 N" * cos90 ^ @) + ("5 N" * cos217 ^ @) "=" - 1 "N" ค้นหา องค์ประกอบ y ของแรงแต่ละอันโดยการคูณแต่ละแรงด้วยไซน์ของมุม เพิ่มพวกเขาเพื่อรับองค์ประกอบ x ผลลัพธ์ Sigma (F_y) = ("3 N" * sin0 ^ @) + ("4 N" * sin90 ^ @) + ("5 N" * si
แสดงว่า (1 + cos theta + i * sin theta) ^ n + (1 + cos theta - i * sin theta) ^ n = 2 ^ (n + 1) * (cos theta / 2) ^ n * cos ( n * theta / 2)?
โปรดดูที่ด้านล่าง. ให้ 1 + costheta + isintheta = r (cosalpha + isinalpha), ที่นี่ r = sqrt ((1 + costheta) ^ 2 + sin ^ 2theta) = sqrt (2 + 2costheta) = sqrt (2 + 4cos ^ 2 (theta / 2 ) -2) = 2cos (theta / 2) และ tanalpha = sintheta / (1 + costheta) == (2sin (theta / 2) cos (theta / 2)) / (2cos ^ 2 (theta / 2)) = tan (theta / 2) หรือ alpha = theta / 2 จากนั้น 1 + costheta-isintheta = r (cos (-alpha) + isin (-alpha)) = r (cosalpha-isinalpha) และเราสามารถเขียน (1 + costheta + isintheta) ^ n + (1 + costheta-isintheta) ^ n ใช้ทฤษฎีบท DE MOivre เป็น r ^ n (cosnalpha + isinnalpha + cosnalpha-isinnalpha) = 2r ^ ncosnalpha = 2 * 2
ความชันของเส้นสัมผัสของ r = 2theta-3sin ((13theta) / 8- (5pi) / 3) ที่ theta = (7pi) / 6 คืออะไร
สี (สีน้ำเงิน) (dy / dx = ([(7pi) / 3-3 sin ((11pi) / 48)] cos ((7pi) / 6) + [2- (39/8) cos ((11pi) / 48)] * sin ((7pi) / 6)) / (- [(7pi) / 3-3 sin ((11pi) / 48)] sin ((7pi) / 6) + [2- (39/8) cos ((11pi) / 48)] cos ((7pi) / 6))) สี SLOPE (สีฟ้า) (m = dy / dx = -0.92335731861741) วิธีแก้ปัญหา: r = 2 เธต้า -3 ที่เป็นบาป ((13theta) / 8- (5 pi) / 3) ที่ theta = (7pi) / 6 dy / dx = (r cos theta + r 'sin theta) / (- r sin theta + r' cos theta) dy / dx = ([2theta -3 sin ((13theta) / 8- (5 pi) / 3)] cos theta + [2-3 (13/8) cos ((13theta) / 8- (5 pi) / 3)] sin theta) / (- [2theta-3 sin ((13theta) / 8- (5 pi) / 3)] sin theta